Metamath Proof Explorer
Description: An elimination deduction. (Contributed by Alan Sare, 17-Oct-2017)
|
|
Ref |
Expression |
|
Hypotheses |
mp3an2ani.1 |
⊢ 𝜑 |
|
|
mp3an2ani.2 |
⊢ ( 𝜓 → 𝜒 ) |
|
|
mp3an2ani.3 |
⊢ ( ( 𝜓 ∧ 𝜃 ) → 𝜏 ) |
|
|
mp3an2ani.4 |
⊢ ( ( 𝜑 ∧ 𝜒 ∧ 𝜏 ) → 𝜂 ) |
|
Assertion |
mp3an2ani |
⊢ ( ( 𝜓 ∧ 𝜃 ) → 𝜂 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
mp3an2ani.1 |
⊢ 𝜑 |
2 |
|
mp3an2ani.2 |
⊢ ( 𝜓 → 𝜒 ) |
3 |
|
mp3an2ani.3 |
⊢ ( ( 𝜓 ∧ 𝜃 ) → 𝜏 ) |
4 |
|
mp3an2ani.4 |
⊢ ( ( 𝜑 ∧ 𝜒 ∧ 𝜏 ) → 𝜂 ) |
5 |
1 2 3 4
|
mp3an3an |
⊢ ( ( 𝜓 ∧ ( 𝜓 ∧ 𝜃 ) ) → 𝜂 ) |
6 |
5
|
anabss5 |
⊢ ( ( 𝜓 ∧ 𝜃 ) → 𝜂 ) |