Metamath Proof Explorer


Theorem mp3an2ani

Description: An elimination deduction. (Contributed by Alan Sare, 17-Oct-2017)

Ref Expression
Hypotheses mp3an2ani.1 𝜑
mp3an2ani.2 ( 𝜓𝜒 )
mp3an2ani.3 ( ( 𝜓𝜃 ) → 𝜏 )
mp3an2ani.4 ( ( 𝜑𝜒𝜏 ) → 𝜂 )
Assertion mp3an2ani ( ( 𝜓𝜃 ) → 𝜂 )

Proof

Step Hyp Ref Expression
1 mp3an2ani.1 𝜑
2 mp3an2ani.2 ( 𝜓𝜒 )
3 mp3an2ani.3 ( ( 𝜓𝜃 ) → 𝜏 )
4 mp3an2ani.4 ( ( 𝜑𝜒𝜏 ) → 𝜂 )
5 1 2 3 4 mp3an3an ( ( 𝜓 ∧ ( 𝜓𝜃 ) ) → 𝜂 )
6 5 anabss5 ( ( 𝜓𝜃 ) → 𝜂 )