Database
CLASSICAL FIRST-ORDER LOGIC WITH EQUALITY
Propositional calculus
Abbreviated conjunction and disjunction of three wff's
mp3an3an
Metamath Proof Explorer
Description: mp3an with antecedents in standard conjunction form and with two
hypotheses which are implications. (Contributed by Alan Sare , 28-Aug-2016)
Ref
Expression
Hypotheses
mp3an3an.1
⊢ 𝜑
mp3an3an.2
⊢ ( 𝜓 → 𝜒 )
mp3an3an.3
⊢ ( 𝜃 → 𝜏 )
mp3an3an.4
⊢ ( ( 𝜑 ∧ 𝜒 ∧ 𝜏 ) → 𝜂 )
Assertion
mp3an3an
⊢ ( ( 𝜓 ∧ 𝜃 ) → 𝜂 )
Proof
Step
Hyp
Ref
Expression
1
mp3an3an.1
⊢ 𝜑
2
mp3an3an.2
⊢ ( 𝜓 → 𝜒 )
3
mp3an3an.3
⊢ ( 𝜃 → 𝜏 )
4
mp3an3an.4
⊢ ( ( 𝜑 ∧ 𝜒 ∧ 𝜏 ) → 𝜂 )
5
1 4
mp3an1
⊢ ( ( 𝜒 ∧ 𝜏 ) → 𝜂 )
6
2 3 5
syl2an
⊢ ( ( 𝜓 ∧ 𝜃 ) → 𝜂 )