Metamath Proof Explorer


Theorem mp3an3an

Description: mp3an with antecedents in standard conjunction form and with two hypotheses which are implications. (Contributed by Alan Sare, 28-Aug-2016)

Ref Expression
Hypotheses mp3an3an.1 𝜑
mp3an3an.2 ( 𝜓𝜒 )
mp3an3an.3 ( 𝜃𝜏 )
mp3an3an.4 ( ( 𝜑𝜒𝜏 ) → 𝜂 )
Assertion mp3an3an ( ( 𝜓𝜃 ) → 𝜂 )

Proof

Step Hyp Ref Expression
1 mp3an3an.1 𝜑
2 mp3an3an.2 ( 𝜓𝜒 )
3 mp3an3an.3 ( 𝜃𝜏 )
4 mp3an3an.4 ( ( 𝜑𝜒𝜏 ) → 𝜂 )
5 1 4 mp3an1 ( ( 𝜒𝜏 ) → 𝜂 )
6 2 3 5 syl2an ( ( 𝜓𝜃 ) → 𝜂 )