Description: An inference based on modus ponens. (Contributed by NM, 24-Feb-2005)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mp3anl1.1 | ⊢ 𝜑 | |
| mp3anl1.2 | ⊢ ( ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ∧ 𝜃 ) → 𝜏 ) | ||
| Assertion | mp3anl1 | ⊢ ( ( ( 𝜓 ∧ 𝜒 ) ∧ 𝜃 ) → 𝜏 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp3anl1.1 | ⊢ 𝜑 | |
| 2 | mp3anl1.2 | ⊢ ( ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ∧ 𝜃 ) → 𝜏 ) | |
| 3 | 2 | ex | ⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → ( 𝜃 → 𝜏 ) ) |
| 4 | 1 3 | mp3an1 | ⊢ ( ( 𝜓 ∧ 𝜒 ) → ( 𝜃 → 𝜏 ) ) |
| 5 | 4 | imp | ⊢ ( ( ( 𝜓 ∧ 𝜒 ) ∧ 𝜃 ) → 𝜏 ) |