Description: An inference based on modus ponens. (Contributed by NM, 24-Feb-2005)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mp3anl1.1 | ⊢ 𝜑 | |
mp3anl1.2 | ⊢ ( ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ∧ 𝜃 ) → 𝜏 ) | ||
Assertion | mp3anl1 | ⊢ ( ( ( 𝜓 ∧ 𝜒 ) ∧ 𝜃 ) → 𝜏 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp3anl1.1 | ⊢ 𝜑 | |
2 | mp3anl1.2 | ⊢ ( ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ∧ 𝜃 ) → 𝜏 ) | |
3 | 2 | ex | ⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → ( 𝜃 → 𝜏 ) ) |
4 | 1 3 | mp3an1 | ⊢ ( ( 𝜓 ∧ 𝜒 ) → ( 𝜃 → 𝜏 ) ) |
5 | 4 | imp | ⊢ ( ( ( 𝜓 ∧ 𝜒 ) ∧ 𝜃 ) → 𝜏 ) |