Metamath Proof Explorer


Theorem mp3anl2

Description: An inference based on modus ponens. (Contributed by NM, 24-Feb-2005)

Ref Expression
Hypotheses mp3anl2.1 𝜓
mp3anl2.2 ( ( ( 𝜑𝜓𝜒 ) ∧ 𝜃 ) → 𝜏 )
Assertion mp3anl2 ( ( ( 𝜑𝜒 ) ∧ 𝜃 ) → 𝜏 )

Proof

Step Hyp Ref Expression
1 mp3anl2.1 𝜓
2 mp3anl2.2 ( ( ( 𝜑𝜓𝜒 ) ∧ 𝜃 ) → 𝜏 )
3 2 ex ( ( 𝜑𝜓𝜒 ) → ( 𝜃𝜏 ) )
4 1 3 mp3an2 ( ( 𝜑𝜒 ) → ( 𝜃𝜏 ) )
5 4 imp ( ( ( 𝜑𝜒 ) ∧ 𝜃 ) → 𝜏 )