Metamath Proof Explorer


Theorem mp3anl3

Description: An inference based on modus ponens. (Contributed by NM, 24-Feb-2005)

Ref Expression
Hypotheses mp3anl3.1 𝜒
mp3anl3.2 ( ( ( 𝜑𝜓𝜒 ) ∧ 𝜃 ) → 𝜏 )
Assertion mp3anl3 ( ( ( 𝜑𝜓 ) ∧ 𝜃 ) → 𝜏 )

Proof

Step Hyp Ref Expression
1 mp3anl3.1 𝜒
2 mp3anl3.2 ( ( ( 𝜑𝜓𝜒 ) ∧ 𝜃 ) → 𝜏 )
3 2 ex ( ( 𝜑𝜓𝜒 ) → ( 𝜃𝜏 ) )
4 1 3 mp3an3 ( ( 𝜑𝜓 ) → ( 𝜃𝜏 ) )
5 4 imp ( ( ( 𝜑𝜓 ) ∧ 𝜃 ) → 𝜏 )