Description: An inference based on modus ponens. (Contributed by NM, 4-Nov-2006)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mp3anr1.1 | ⊢ 𝜓 | |
| mp3anr1.2 | ⊢ ( ( 𝜑 ∧ ( 𝜓 ∧ 𝜒 ∧ 𝜃 ) ) → 𝜏 ) | ||
| Assertion | mp3anr1 | ⊢ ( ( 𝜑 ∧ ( 𝜒 ∧ 𝜃 ) ) → 𝜏 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp3anr1.1 | ⊢ 𝜓 | |
| 2 | mp3anr1.2 | ⊢ ( ( 𝜑 ∧ ( 𝜓 ∧ 𝜒 ∧ 𝜃 ) ) → 𝜏 ) | |
| 3 | 2 | ancoms | ⊢ ( ( ( 𝜓 ∧ 𝜒 ∧ 𝜃 ) ∧ 𝜑 ) → 𝜏 ) |
| 4 | 1 3 | mp3anl1 | ⊢ ( ( ( 𝜒 ∧ 𝜃 ) ∧ 𝜑 ) → 𝜏 ) |
| 5 | 4 | ancoms | ⊢ ( ( 𝜑 ∧ ( 𝜒 ∧ 𝜃 ) ) → 𝜏 ) |