Metamath Proof Explorer
Description: Modus ponens conjoining dissimilar antecedents. (Contributed by NM, 1-Feb-2008) (Proof shortened by Andrew Salmon, 7-May-2011)
|
|
Ref |
Expression |
|
Hypotheses |
mpan9.1 |
⊢ ( 𝜑 → 𝜓 ) |
|
|
mpan9.2 |
⊢ ( 𝜒 → ( 𝜓 → 𝜃 ) ) |
|
Assertion |
mpan9 |
⊢ ( ( 𝜑 ∧ 𝜒 ) → 𝜃 ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mpan9.1 |
⊢ ( 𝜑 → 𝜓 ) |
| 2 |
|
mpan9.2 |
⊢ ( 𝜒 → ( 𝜓 → 𝜃 ) ) |
| 3 |
1 2
|
syl5 |
⊢ ( 𝜒 → ( 𝜑 → 𝜃 ) ) |
| 4 |
3
|
impcom |
⊢ ( ( 𝜑 ∧ 𝜒 ) → 𝜃 ) |