Metamath Proof Explorer


Theorem mpani

Description: An inference based on modus ponens. (Contributed by NM, 10-Apr-1994) (Proof shortened by Wolf Lammen, 19-Nov-2012)

Ref Expression
Hypotheses mpani.1 𝜓
mpani.2 ( 𝜑 → ( ( 𝜓𝜒 ) → 𝜃 ) )
Assertion mpani ( 𝜑 → ( 𝜒𝜃 ) )

Proof

Step Hyp Ref Expression
1 mpani.1 𝜓
2 mpani.2 ( 𝜑 → ( ( 𝜓𝜒 ) → 𝜃 ) )
3 1 a1i ( 𝜑𝜓 )
4 3 2 mpand ( 𝜑 → ( 𝜒𝜃 ) )