Metamath Proof Explorer


Theorem mpanl12

Description: An inference based on modus ponens. (Contributed by NM, 13-Jul-2005)

Ref Expression
Hypotheses mpanl12.1 𝜑
mpanl12.2 𝜓
mpanl12.3 ( ( ( 𝜑𝜓 ) ∧ 𝜒 ) → 𝜃 )
Assertion mpanl12 ( 𝜒𝜃 )

Proof

Step Hyp Ref Expression
1 mpanl12.1 𝜑
2 mpanl12.2 𝜓
3 mpanl12.3 ( ( ( 𝜑𝜓 ) ∧ 𝜒 ) → 𝜃 )
4 1 3 mpanl1 ( ( 𝜓𝜒 ) → 𝜃 )
5 2 4 mpan ( 𝜒𝜃 )