Description: An inference based on modus ponens. (Contributed by NM, 13-Jul-2005)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mpanl12.1 | ⊢ 𝜑 | |
mpanl12.2 | ⊢ 𝜓 | ||
mpanl12.3 | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) → 𝜃 ) | ||
Assertion | mpanl12 | ⊢ ( 𝜒 → 𝜃 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpanl12.1 | ⊢ 𝜑 | |
2 | mpanl12.2 | ⊢ 𝜓 | |
3 | mpanl12.3 | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) → 𝜃 ) | |
4 | 1 3 | mpanl1 | ⊢ ( ( 𝜓 ∧ 𝜒 ) → 𝜃 ) |
5 | 2 4 | mpan | ⊢ ( 𝜒 → 𝜃 ) |