Metamath Proof Explorer
		
		
		
		Description:  An inference based on modus ponens.  (Contributed by NM, 30-Dec-2004)
       (Proof shortened by Wolf Lammen, 7-Apr-2013)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | mpanlr1.1 | ⊢ 𝜓 | 
					
						|  |  | mpanlr1.2 | ⊢ ( ( ( 𝜑  ∧  ( 𝜓  ∧  𝜒 ) )  ∧  𝜃 )  →  𝜏 ) | 
				
					|  | Assertion | mpanlr1 | ⊢  ( ( ( 𝜑  ∧  𝜒 )  ∧  𝜃 )  →  𝜏 ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mpanlr1.1 | ⊢ 𝜓 | 
						
							| 2 |  | mpanlr1.2 | ⊢ ( ( ( 𝜑  ∧  ( 𝜓  ∧  𝜒 ) )  ∧  𝜃 )  →  𝜏 ) | 
						
							| 3 | 1 | jctl | ⊢ ( 𝜒  →  ( 𝜓  ∧  𝜒 ) ) | 
						
							| 4 | 3 2 | sylanl2 | ⊢ ( ( ( 𝜑  ∧  𝜒 )  ∧  𝜃 )  →  𝜏 ) |