Metamath Proof Explorer
Description: An inference based on modus ponens. (Contributed by NM, 30-Dec-2004)
(Proof shortened by Wolf Lammen, 7-Apr-2013)
|
|
Ref |
Expression |
|
Hypotheses |
mpanlr1.1 |
⊢ 𝜓 |
|
|
mpanlr1.2 |
⊢ ( ( ( 𝜑 ∧ ( 𝜓 ∧ 𝜒 ) ) ∧ 𝜃 ) → 𝜏 ) |
|
Assertion |
mpanlr1 |
⊢ ( ( ( 𝜑 ∧ 𝜒 ) ∧ 𝜃 ) → 𝜏 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
mpanlr1.1 |
⊢ 𝜓 |
2 |
|
mpanlr1.2 |
⊢ ( ( ( 𝜑 ∧ ( 𝜓 ∧ 𝜒 ) ) ∧ 𝜃 ) → 𝜏 ) |
3 |
1
|
jctl |
⊢ ( 𝜒 → ( 𝜓 ∧ 𝜒 ) ) |
4 |
3 2
|
sylanl2 |
⊢ ( ( ( 𝜑 ∧ 𝜒 ) ∧ 𝜃 ) → 𝜏 ) |