Description: An inference based on modus ponens. (Contributed by NM, 24-Jul-2009)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mpanr12.1 | ⊢ 𝜓 | |
| mpanr12.2 | ⊢ 𝜒 | ||
| mpanr12.3 | ⊢ ( ( 𝜑 ∧ ( 𝜓 ∧ 𝜒 ) ) → 𝜃 ) | ||
| Assertion | mpanr12 | ⊢ ( 𝜑 → 𝜃 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpanr12.1 | ⊢ 𝜓 | |
| 2 | mpanr12.2 | ⊢ 𝜒 | |
| 3 | mpanr12.3 | ⊢ ( ( 𝜑 ∧ ( 𝜓 ∧ 𝜒 ) ) → 𝜃 ) | |
| 4 | 1 3 | mpanr1 | ⊢ ( ( 𝜑 ∧ 𝜒 ) → 𝜃 ) |
| 5 | 2 4 | mpan2 | ⊢ ( 𝜑 → 𝜃 ) |