Description: An inference based on modus ponens. (Contributed by NM, 24-Jul-2009)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mpanr12.1 | ⊢ 𝜓 | |
mpanr12.2 | ⊢ 𝜒 | ||
mpanr12.3 | ⊢ ( ( 𝜑 ∧ ( 𝜓 ∧ 𝜒 ) ) → 𝜃 ) | ||
Assertion | mpanr12 | ⊢ ( 𝜑 → 𝜃 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpanr12.1 | ⊢ 𝜓 | |
2 | mpanr12.2 | ⊢ 𝜒 | |
3 | mpanr12.3 | ⊢ ( ( 𝜑 ∧ ( 𝜓 ∧ 𝜒 ) ) → 𝜃 ) | |
4 | 1 3 | mpanr1 | ⊢ ( ( 𝜑 ∧ 𝜒 ) → 𝜃 ) |
5 | 2 4 | mpan2 | ⊢ ( 𝜑 → 𝜃 ) |