Metamath Proof Explorer


Theorem mpanr12

Description: An inference based on modus ponens. (Contributed by NM, 24-Jul-2009)

Ref Expression
Hypotheses mpanr12.1 𝜓
mpanr12.2 𝜒
mpanr12.3 ( ( 𝜑 ∧ ( 𝜓𝜒 ) ) → 𝜃 )
Assertion mpanr12 ( 𝜑𝜃 )

Proof

Step Hyp Ref Expression
1 mpanr12.1 𝜓
2 mpanr12.2 𝜒
3 mpanr12.3 ( ( 𝜑 ∧ ( 𝜓𝜒 ) ) → 𝜃 )
4 1 3 mpanr1 ( ( 𝜑𝜒 ) → 𝜃 )
5 2 4 mpan2 ( 𝜑𝜃 )