Metamath Proof Explorer
Description: Detach a conjunction of truths in a biconditional. (Contributed by NM, 16-Sep-2011)
|
|
Ref |
Expression |
|
Hypotheses |
mpbir3an.1 |
⊢ 𝜓 |
|
|
mpbir3an.2 |
⊢ 𝜒 |
|
|
mpbir3an.3 |
⊢ 𝜃 |
|
|
mpbir3an.4 |
⊢ ( 𝜑 ↔ ( 𝜓 ∧ 𝜒 ∧ 𝜃 ) ) |
|
Assertion |
mpbir3an |
⊢ 𝜑 |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
mpbir3an.1 |
⊢ 𝜓 |
2 |
|
mpbir3an.2 |
⊢ 𝜒 |
3 |
|
mpbir3an.3 |
⊢ 𝜃 |
4 |
|
mpbir3an.4 |
⊢ ( 𝜑 ↔ ( 𝜓 ∧ 𝜒 ∧ 𝜃 ) ) |
5 |
1 2 3
|
3pm3.2i |
⊢ ( 𝜓 ∧ 𝜒 ∧ 𝜃 ) |
6 |
5 4
|
mpbir |
⊢ 𝜑 |