Metamath Proof Explorer


Theorem mpbir3an

Description: Detach a conjunction of truths in a biconditional. (Contributed by NM, 16-Sep-2011)

Ref Expression
Hypotheses mpbir3an.1 𝜓
mpbir3an.2 𝜒
mpbir3an.3 𝜃
mpbir3an.4 ( 𝜑 ↔ ( 𝜓𝜒𝜃 ) )
Assertion mpbir3an 𝜑

Proof

Step Hyp Ref Expression
1 mpbir3an.1 𝜓
2 mpbir3an.2 𝜒
3 mpbir3an.3 𝜃
4 mpbir3an.4 ( 𝜑 ↔ ( 𝜓𝜒𝜃 ) )
5 1 2 3 3pm3.2i ( 𝜓𝜒𝜃 )
6 5 4 mpbir 𝜑