Metamath Proof Explorer


Theorem mpbiran3d

Description: Equivalence with a conjunction one of whose conjuncts is a consequence of the other. Deduction form. (Contributed by Zhi Wang, 24-Sep-2024)

Ref Expression
Hypotheses mpbiran3d.1 ( 𝜑 → ( 𝜓 ↔ ( 𝜒𝜃 ) ) )
mpbiran3d.2 ( ( 𝜑𝜒 ) → 𝜃 )
Assertion mpbiran3d ( 𝜑 → ( 𝜓𝜒 ) )

Proof

Step Hyp Ref Expression
1 mpbiran3d.1 ( 𝜑 → ( 𝜓 ↔ ( 𝜒𝜃 ) ) )
2 mpbiran3d.2 ( ( 𝜑𝜒 ) → 𝜃 )
3 1 simprbda ( ( 𝜑𝜓 ) → 𝜒 )
4 3 ex ( 𝜑 → ( 𝜓𝜒 ) )
5 2 ex ( 𝜑 → ( 𝜒𝜃 ) )
6 5 ancld ( 𝜑 → ( 𝜒 → ( 𝜒𝜃 ) ) )
7 6 1 sylibrd ( 𝜑 → ( 𝜒𝜓 ) )
8 4 7 impbid ( 𝜑 → ( 𝜓𝜒 ) )