Metamath Proof Explorer


Theorem mpbiran4d

Description: Equivalence with a conjunction one of whose conjuncts is a consequence of the other. Deduction form. (Contributed by Zhi Wang, 27-Sep-2024)

Ref Expression
Hypotheses mpbiran3d.1 ( 𝜑 → ( 𝜓 ↔ ( 𝜒𝜃 ) ) )
mpbiran4d.2 ( ( 𝜑𝜃 ) → 𝜒 )
Assertion mpbiran4d ( 𝜑 → ( 𝜓𝜃 ) )

Proof

Step Hyp Ref Expression
1 mpbiran3d.1 ( 𝜑 → ( 𝜓 ↔ ( 𝜒𝜃 ) ) )
2 mpbiran4d.2 ( ( 𝜑𝜃 ) → 𝜒 )
3 1 biancomd ( 𝜑 → ( 𝜓 ↔ ( 𝜃𝜒 ) ) )
4 3 2 mpbiran3d ( 𝜑 → ( 𝜓𝜃 ) )