Metamath Proof Explorer


Theorem mpbirand

Description: Detach truth from conjunction in biconditional. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypotheses mpbirand.1 ( 𝜑𝜒 )
mpbirand.2 ( 𝜑 → ( 𝜓 ↔ ( 𝜒𝜃 ) ) )
Assertion mpbirand ( 𝜑 → ( 𝜓𝜃 ) )

Proof

Step Hyp Ref Expression
1 mpbirand.1 ( 𝜑𝜒 )
2 mpbirand.2 ( 𝜑 → ( 𝜓 ↔ ( 𝜒𝜃 ) ) )
3 1 biantrurd ( 𝜑 → ( 𝜃 ↔ ( 𝜒𝜃 ) ) )
4 2 3 bitr4d ( 𝜑 → ( 𝜓𝜃 ) )