Metamath Proof Explorer
Description: An inference based on modus ponens. (Contributed by NM, 8-Nov-2007)
|
|
Ref |
Expression |
|
Hypotheses |
mpd3an3.2 |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜒 ) |
|
|
mpd3an3.3 |
⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → 𝜃 ) |
|
Assertion |
mpd3an3 |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜃 ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mpd3an3.2 |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜒 ) |
| 2 |
|
mpd3an3.3 |
⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → 𝜃 ) |
| 3 |
2
|
3expa |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) → 𝜃 ) |
| 4 |
1 3
|
mpdan |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜃 ) |