Metamath Proof Explorer


Theorem mpdi

Description: A nested modus ponens deduction. (Contributed by NM, 16-Apr-2005) (Proof shortened by Mel L. O'Cat, 15-Jan-2008)

Ref Expression
Hypotheses mpdi.1 ( 𝜓𝜒 )
mpdi.2 ( 𝜑 → ( 𝜓 → ( 𝜒𝜃 ) ) )
Assertion mpdi ( 𝜑 → ( 𝜓𝜃 ) )

Proof

Step Hyp Ref Expression
1 mpdi.1 ( 𝜓𝜒 )
2 mpdi.2 ( 𝜑 → ( 𝜓 → ( 𝜒𝜃 ) ) )
3 1 a1i ( 𝜑 → ( 𝜓𝜒 ) )
4 3 2 mpdd ( 𝜑 → ( 𝜓𝜃 ) )