Metamath Proof Explorer


Theorem mpets2

Description: Member Partition-Equivalence Theorem with binary relations, cf. mpet2 . (Contributed by Peter Mazsa, 24-Sep-2021)

Ref Expression
Assertion mpets2 ( 𝐴𝑉 → ( ( E ↾ 𝐴 ) Parts 𝐴 ↔ ≀ ( E ↾ 𝐴 ) Ers 𝐴 ) )

Proof

Step Hyp Ref Expression
1 mpet2 ( ( E ↾ 𝐴 ) Part 𝐴 ↔ ≀ ( E ↾ 𝐴 ) ErALTV 𝐴 )
2 cnvepresex ( 𝐴𝑉 → ( E ↾ 𝐴 ) ∈ V )
3 brpartspart ( ( 𝐴𝑉 ∧ ( E ↾ 𝐴 ) ∈ V ) → ( ( E ↾ 𝐴 ) Parts 𝐴 ↔ ( E ↾ 𝐴 ) Part 𝐴 ) )
4 2 3 mpdan ( 𝐴𝑉 → ( ( E ↾ 𝐴 ) Parts 𝐴 ↔ ( E ↾ 𝐴 ) Part 𝐴 ) )
5 1cosscnvepresex ( 𝐴𝑉 → ≀ ( E ↾ 𝐴 ) ∈ V )
6 brerser ( ( 𝐴𝑉 ∧ ≀ ( E ↾ 𝐴 ) ∈ V ) → ( ≀ ( E ↾ 𝐴 ) Ers 𝐴 ↔ ≀ ( E ↾ 𝐴 ) ErALTV 𝐴 ) )
7 5 6 mpdan ( 𝐴𝑉 → ( ≀ ( E ↾ 𝐴 ) Ers 𝐴 ↔ ≀ ( E ↾ 𝐴 ) ErALTV 𝐴 ) )
8 4 7 bibi12d ( 𝐴𝑉 → ( ( ( E ↾ 𝐴 ) Parts 𝐴 ↔ ≀ ( E ↾ 𝐴 ) Ers 𝐴 ) ↔ ( ( E ↾ 𝐴 ) Part 𝐴 ↔ ≀ ( E ↾ 𝐴 ) ErALTV 𝐴 ) ) )
9 1 8 mpbiri ( 𝐴𝑉 → ( ( E ↾ 𝐴 ) Parts 𝐴 ↔ ≀ ( E ↾ 𝐴 ) Ers 𝐴 ) )