Step |
Hyp |
Ref |
Expression |
1 |
|
mpfconst.b |
⊢ 𝐵 = ( Base ‘ 𝑆 ) |
2 |
|
mpfconst.q |
⊢ 𝑄 = ran ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) |
3 |
|
mpfconst.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
4 |
|
mpfconst.s |
⊢ ( 𝜑 → 𝑆 ∈ CRing ) |
5 |
|
mpfconst.r |
⊢ ( 𝜑 → 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) |
6 |
|
mpfconst.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑅 ) |
7 |
|
eqid |
⊢ ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) = ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) |
8 |
|
eqid |
⊢ ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) = ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) |
9 |
|
eqid |
⊢ ( 𝑆 ↾s 𝑅 ) = ( 𝑆 ↾s 𝑅 ) |
10 |
|
eqid |
⊢ ( algSc ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) ) = ( algSc ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) ) |
11 |
7 8 9 1 10 3 4 5 6
|
evlssca |
⊢ ( 𝜑 → ( ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) ‘ ( ( algSc ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) ) ‘ 𝑋 ) ) = ( ( 𝐵 ↑m 𝐼 ) × { 𝑋 } ) ) |
12 |
|
eqid |
⊢ ( 𝑆 ↑s ( 𝐵 ↑m 𝐼 ) ) = ( 𝑆 ↑s ( 𝐵 ↑m 𝐼 ) ) |
13 |
7 8 9 12 1
|
evlsrhm |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) ∈ ( ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) RingHom ( 𝑆 ↑s ( 𝐵 ↑m 𝐼 ) ) ) ) |
14 |
3 4 5 13
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) ∈ ( ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) RingHom ( 𝑆 ↑s ( 𝐵 ↑m 𝐼 ) ) ) ) |
15 |
|
eqid |
⊢ ( Base ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) ) = ( Base ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) ) |
16 |
|
eqid |
⊢ ( Base ‘ ( 𝑆 ↑s ( 𝐵 ↑m 𝐼 ) ) ) = ( Base ‘ ( 𝑆 ↑s ( 𝐵 ↑m 𝐼 ) ) ) |
17 |
15 16
|
rhmf |
⊢ ( ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) ∈ ( ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) RingHom ( 𝑆 ↑s ( 𝐵 ↑m 𝐼 ) ) ) → ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) : ( Base ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) ) ⟶ ( Base ‘ ( 𝑆 ↑s ( 𝐵 ↑m 𝐼 ) ) ) ) |
18 |
|
ffn |
⊢ ( ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) : ( Base ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) ) ⟶ ( Base ‘ ( 𝑆 ↑s ( 𝐵 ↑m 𝐼 ) ) ) → ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) Fn ( Base ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) ) ) |
19 |
14 17 18
|
3syl |
⊢ ( 𝜑 → ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) Fn ( Base ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) ) ) |
20 |
9
|
subrgring |
⊢ ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → ( 𝑆 ↾s 𝑅 ) ∈ Ring ) |
21 |
5 20
|
syl |
⊢ ( 𝜑 → ( 𝑆 ↾s 𝑅 ) ∈ Ring ) |
22 |
|
eqid |
⊢ ( Scalar ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) ) = ( Scalar ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) ) |
23 |
8
|
mplring |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑆 ↾s 𝑅 ) ∈ Ring ) → ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) ∈ Ring ) |
24 |
8
|
mpllmod |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑆 ↾s 𝑅 ) ∈ Ring ) → ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) ∈ LMod ) |
25 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) ) ) = ( Base ‘ ( Scalar ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) ) ) |
26 |
10 22 23 24 25 15
|
asclf |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑆 ↾s 𝑅 ) ∈ Ring ) → ( algSc ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) ) : ( Base ‘ ( Scalar ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) ) ) ⟶ ( Base ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) ) ) |
27 |
3 21 26
|
syl2anc |
⊢ ( 𝜑 → ( algSc ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) ) : ( Base ‘ ( Scalar ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) ) ) ⟶ ( Base ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) ) ) |
28 |
1
|
subrgss |
⊢ ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → 𝑅 ⊆ 𝐵 ) |
29 |
9 1
|
ressbas2 |
⊢ ( 𝑅 ⊆ 𝐵 → 𝑅 = ( Base ‘ ( 𝑆 ↾s 𝑅 ) ) ) |
30 |
5 28 29
|
3syl |
⊢ ( 𝜑 → 𝑅 = ( Base ‘ ( 𝑆 ↾s 𝑅 ) ) ) |
31 |
|
ovexd |
⊢ ( 𝜑 → ( 𝑆 ↾s 𝑅 ) ∈ V ) |
32 |
8 3 31
|
mplsca |
⊢ ( 𝜑 → ( 𝑆 ↾s 𝑅 ) = ( Scalar ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) ) ) |
33 |
32
|
fveq2d |
⊢ ( 𝜑 → ( Base ‘ ( 𝑆 ↾s 𝑅 ) ) = ( Base ‘ ( Scalar ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) ) ) ) |
34 |
30 33
|
eqtrd |
⊢ ( 𝜑 → 𝑅 = ( Base ‘ ( Scalar ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) ) ) ) |
35 |
6 34
|
eleqtrd |
⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ ( Scalar ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) ) ) ) |
36 |
27 35
|
ffvelrnd |
⊢ ( 𝜑 → ( ( algSc ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) ) ‘ 𝑋 ) ∈ ( Base ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) ) ) |
37 |
|
fnfvelrn |
⊢ ( ( ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) Fn ( Base ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) ) ∧ ( ( algSc ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) ) ‘ 𝑋 ) ∈ ( Base ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) ) ) → ( ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) ‘ ( ( algSc ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) ) ‘ 𝑋 ) ) ∈ ran ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) ) |
38 |
19 36 37
|
syl2anc |
⊢ ( 𝜑 → ( ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) ‘ ( ( algSc ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) ) ‘ 𝑋 ) ) ∈ ran ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) ) |
39 |
11 38
|
eqeltrrd |
⊢ ( 𝜑 → ( ( 𝐵 ↑m 𝐼 ) × { 𝑋 } ) ∈ ran ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) ) |
40 |
39 2
|
eleqtrrdi |
⊢ ( 𝜑 → ( ( 𝐵 ↑m 𝐼 ) × { 𝑋 } ) ∈ 𝑄 ) |