Metamath Proof Explorer


Theorem mpff

Description: Polynomial functions are functions. (Contributed by Mario Carneiro, 19-Mar-2015)

Ref Expression
Hypotheses mpfsubrg.q 𝑄 = ran ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 )
mpff.b 𝐵 = ( Base ‘ 𝑆 )
Assertion mpff ( 𝐹𝑄𝐹 : ( 𝐵m 𝐼 ) ⟶ 𝐵 )

Proof

Step Hyp Ref Expression
1 mpfsubrg.q 𝑄 = ran ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 )
2 mpff.b 𝐵 = ( Base ‘ 𝑆 )
3 2 eqcomi ( Base ‘ 𝑆 ) = 𝐵
4 3 oveq1i ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) = ( 𝐵m 𝐼 )
5 4 oveq2i ( 𝑆s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) = ( 𝑆s ( 𝐵m 𝐼 ) )
6 eqid ( Base ‘ ( 𝑆s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) = ( Base ‘ ( 𝑆s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) )
7 1 mpfrcl ( 𝐹𝑄 → ( 𝐼 ∈ V ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) )
8 7 simp2d ( 𝐹𝑄𝑆 ∈ CRing )
9 ovexd ( 𝐹𝑄 → ( 𝐵m 𝐼 ) ∈ V )
10 1 mpfsubrg ( ( 𝐼 ∈ V ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → 𝑄 ∈ ( SubRing ‘ ( 𝑆s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) )
11 6 subrgss ( 𝑄 ∈ ( SubRing ‘ ( 𝑆s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) → 𝑄 ⊆ ( Base ‘ ( 𝑆s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) )
12 7 10 11 3syl ( 𝐹𝑄𝑄 ⊆ ( Base ‘ ( 𝑆s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) )
13 id ( 𝐹𝑄𝐹𝑄 )
14 12 13 sseldd ( 𝐹𝑄𝐹 ∈ ( Base ‘ ( 𝑆s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) )
15 5 2 6 8 9 14 pwselbas ( 𝐹𝑄𝐹 : ( 𝐵m 𝐼 ) ⟶ 𝐵 )