Step |
Hyp |
Ref |
Expression |
1 |
|
pf1rcl.q |
⊢ 𝑄 = ran ( eval1 ‘ 𝑅 ) |
2 |
|
pf1f.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
3 |
|
mpfpf1.q |
⊢ 𝐸 = ran ( 1o eval 𝑅 ) |
4 |
|
eqid |
⊢ ( 1o eval 𝑅 ) = ( 1o eval 𝑅 ) |
5 |
4 2
|
evlval |
⊢ ( 1o eval 𝑅 ) = ( ( 1o evalSub 𝑅 ) ‘ 𝐵 ) |
6 |
5
|
rneqi |
⊢ ran ( 1o eval 𝑅 ) = ran ( ( 1o evalSub 𝑅 ) ‘ 𝐵 ) |
7 |
3 6
|
eqtri |
⊢ 𝐸 = ran ( ( 1o evalSub 𝑅 ) ‘ 𝐵 ) |
8 |
7
|
mpfrcl |
⊢ ( 𝐹 ∈ 𝐸 → ( 1o ∈ V ∧ 𝑅 ∈ CRing ∧ 𝐵 ∈ ( SubRing ‘ 𝑅 ) ) ) |
9 |
8
|
simp2d |
⊢ ( 𝐹 ∈ 𝐸 → 𝑅 ∈ CRing ) |
10 |
|
id |
⊢ ( 𝐹 ∈ 𝐸 → 𝐹 ∈ 𝐸 ) |
11 |
10 3
|
eleqtrdi |
⊢ ( 𝐹 ∈ 𝐸 → 𝐹 ∈ ran ( 1o eval 𝑅 ) ) |
12 |
|
1on |
⊢ 1o ∈ On |
13 |
|
eqid |
⊢ ( 1o mPoly 𝑅 ) = ( 1o mPoly 𝑅 ) |
14 |
|
eqid |
⊢ ( 𝑅 ↑s ( 𝐵 ↑m 1o ) ) = ( 𝑅 ↑s ( 𝐵 ↑m 1o ) ) |
15 |
4 2 13 14
|
evlrhm |
⊢ ( ( 1o ∈ On ∧ 𝑅 ∈ CRing ) → ( 1o eval 𝑅 ) ∈ ( ( 1o mPoly 𝑅 ) RingHom ( 𝑅 ↑s ( 𝐵 ↑m 1o ) ) ) ) |
16 |
12 9 15
|
sylancr |
⊢ ( 𝐹 ∈ 𝐸 → ( 1o eval 𝑅 ) ∈ ( ( 1o mPoly 𝑅 ) RingHom ( 𝑅 ↑s ( 𝐵 ↑m 1o ) ) ) ) |
17 |
|
eqid |
⊢ ( Poly1 ‘ 𝑅 ) = ( Poly1 ‘ 𝑅 ) |
18 |
|
eqid |
⊢ ( PwSer1 ‘ 𝑅 ) = ( PwSer1 ‘ 𝑅 ) |
19 |
|
eqid |
⊢ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) = ( Base ‘ ( Poly1 ‘ 𝑅 ) ) |
20 |
17 18 19
|
ply1bas |
⊢ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) = ( Base ‘ ( 1o mPoly 𝑅 ) ) |
21 |
|
eqid |
⊢ ( Base ‘ ( 𝑅 ↑s ( 𝐵 ↑m 1o ) ) ) = ( Base ‘ ( 𝑅 ↑s ( 𝐵 ↑m 1o ) ) ) |
22 |
20 21
|
rhmf |
⊢ ( ( 1o eval 𝑅 ) ∈ ( ( 1o mPoly 𝑅 ) RingHom ( 𝑅 ↑s ( 𝐵 ↑m 1o ) ) ) → ( 1o eval 𝑅 ) : ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ⟶ ( Base ‘ ( 𝑅 ↑s ( 𝐵 ↑m 1o ) ) ) ) |
23 |
|
ffn |
⊢ ( ( 1o eval 𝑅 ) : ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ⟶ ( Base ‘ ( 𝑅 ↑s ( 𝐵 ↑m 1o ) ) ) → ( 1o eval 𝑅 ) Fn ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) |
24 |
|
fvelrnb |
⊢ ( ( 1o eval 𝑅 ) Fn ( Base ‘ ( Poly1 ‘ 𝑅 ) ) → ( 𝐹 ∈ ran ( 1o eval 𝑅 ) ↔ ∃ 𝑥 ∈ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ( ( 1o eval 𝑅 ) ‘ 𝑥 ) = 𝐹 ) ) |
25 |
16 22 23 24
|
4syl |
⊢ ( 𝐹 ∈ 𝐸 → ( 𝐹 ∈ ran ( 1o eval 𝑅 ) ↔ ∃ 𝑥 ∈ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ( ( 1o eval 𝑅 ) ‘ 𝑥 ) = 𝐹 ) ) |
26 |
11 25
|
mpbid |
⊢ ( 𝐹 ∈ 𝐸 → ∃ 𝑥 ∈ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ( ( 1o eval 𝑅 ) ‘ 𝑥 ) = 𝐹 ) |
27 |
|
eqid |
⊢ ( eval1 ‘ 𝑅 ) = ( eval1 ‘ 𝑅 ) |
28 |
27 4 2 13 20
|
evl1val |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑥 ∈ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) → ( ( eval1 ‘ 𝑅 ) ‘ 𝑥 ) = ( ( ( 1o eval 𝑅 ) ‘ 𝑥 ) ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) |
29 |
|
eqid |
⊢ ( 𝑅 ↑s 𝐵 ) = ( 𝑅 ↑s 𝐵 ) |
30 |
27 17 29 2
|
evl1rhm |
⊢ ( 𝑅 ∈ CRing → ( eval1 ‘ 𝑅 ) ∈ ( ( Poly1 ‘ 𝑅 ) RingHom ( 𝑅 ↑s 𝐵 ) ) ) |
31 |
|
eqid |
⊢ ( Base ‘ ( 𝑅 ↑s 𝐵 ) ) = ( Base ‘ ( 𝑅 ↑s 𝐵 ) ) |
32 |
19 31
|
rhmf |
⊢ ( ( eval1 ‘ 𝑅 ) ∈ ( ( Poly1 ‘ 𝑅 ) RingHom ( 𝑅 ↑s 𝐵 ) ) → ( eval1 ‘ 𝑅 ) : ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ⟶ ( Base ‘ ( 𝑅 ↑s 𝐵 ) ) ) |
33 |
|
ffn |
⊢ ( ( eval1 ‘ 𝑅 ) : ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ⟶ ( Base ‘ ( 𝑅 ↑s 𝐵 ) ) → ( eval1 ‘ 𝑅 ) Fn ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) |
34 |
30 32 33
|
3syl |
⊢ ( 𝑅 ∈ CRing → ( eval1 ‘ 𝑅 ) Fn ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) |
35 |
|
fnfvelrn |
⊢ ( ( ( eval1 ‘ 𝑅 ) Fn ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ∧ 𝑥 ∈ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) → ( ( eval1 ‘ 𝑅 ) ‘ 𝑥 ) ∈ ran ( eval1 ‘ 𝑅 ) ) |
36 |
34 35
|
sylan |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑥 ∈ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) → ( ( eval1 ‘ 𝑅 ) ‘ 𝑥 ) ∈ ran ( eval1 ‘ 𝑅 ) ) |
37 |
36 1
|
eleqtrrdi |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑥 ∈ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) → ( ( eval1 ‘ 𝑅 ) ‘ 𝑥 ) ∈ 𝑄 ) |
38 |
28 37
|
eqeltrrd |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑥 ∈ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) → ( ( ( 1o eval 𝑅 ) ‘ 𝑥 ) ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ∈ 𝑄 ) |
39 |
|
coeq1 |
⊢ ( ( ( 1o eval 𝑅 ) ‘ 𝑥 ) = 𝐹 → ( ( ( 1o eval 𝑅 ) ‘ 𝑥 ) ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) = ( 𝐹 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) |
40 |
39
|
eleq1d |
⊢ ( ( ( 1o eval 𝑅 ) ‘ 𝑥 ) = 𝐹 → ( ( ( ( 1o eval 𝑅 ) ‘ 𝑥 ) ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ∈ 𝑄 ↔ ( 𝐹 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ∈ 𝑄 ) ) |
41 |
38 40
|
syl5ibcom |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑥 ∈ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) → ( ( ( 1o eval 𝑅 ) ‘ 𝑥 ) = 𝐹 → ( 𝐹 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ∈ 𝑄 ) ) |
42 |
41
|
rexlimdva |
⊢ ( 𝑅 ∈ CRing → ( ∃ 𝑥 ∈ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ( ( 1o eval 𝑅 ) ‘ 𝑥 ) = 𝐹 → ( 𝐹 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ∈ 𝑄 ) ) |
43 |
9 26 42
|
sylc |
⊢ ( 𝐹 ∈ 𝐸 → ( 𝐹 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ∈ 𝑄 ) |