Metamath Proof Explorer


Theorem mpfrcl

Description: Reverse closure for the set of polynomial functions. (Contributed by Stefan O'Rear, 19-Mar-2015)

Ref Expression
Hypothesis mpfrcl.q 𝑄 = ran ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 )
Assertion mpfrcl ( 𝑋𝑄 → ( 𝐼 ∈ V ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) )

Proof

Step Hyp Ref Expression
1 mpfrcl.q 𝑄 = ran ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 )
2 ne0i ( 𝑋 ∈ ran ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) → ran ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) ≠ ∅ )
3 2 1 eleq2s ( 𝑋𝑄 → ran ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) ≠ ∅ )
4 rneq ( ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) = ∅ → ran ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) = ran ∅ )
5 rn0 ran ∅ = ∅
6 4 5 eqtrdi ( ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) = ∅ → ran ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) = ∅ )
7 6 necon3i ( ran ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) ≠ ∅ → ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) ≠ ∅ )
8 fveq1 ( ( 𝐼 evalSub 𝑆 ) = ∅ → ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) = ( ∅ ‘ 𝑅 ) )
9 0fv ( ∅ ‘ 𝑅 ) = ∅
10 8 9 eqtrdi ( ( 𝐼 evalSub 𝑆 ) = ∅ → ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) = ∅ )
11 10 necon3i ( ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) ≠ ∅ → ( 𝐼 evalSub 𝑆 ) ≠ ∅ )
12 reldmevls Rel dom evalSub
13 12 ovprc1 ( ¬ 𝐼 ∈ V → ( 𝐼 evalSub 𝑆 ) = ∅ )
14 13 necon1ai ( ( 𝐼 evalSub 𝑆 ) ≠ ∅ → 𝐼 ∈ V )
15 n0 ( ( 𝐼 evalSub 𝑆 ) ≠ ∅ ↔ ∃ 𝑎 𝑎 ∈ ( 𝐼 evalSub 𝑆 ) )
16 df-evls evalSub = ( 𝑖 ∈ V , 𝑠 ∈ CRing ↦ ( Base ‘ 𝑠 ) / 𝑏 ( 𝑟 ∈ ( SubRing ‘ 𝑠 ) ↦ ( 𝑖 mPoly ( 𝑠s 𝑟 ) ) / 𝑤 ( 𝑓 ∈ ( 𝑤 RingHom ( 𝑠s ( 𝑏m 𝑖 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥𝑟 ↦ ( ( 𝑏m 𝑖 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝑖 mVar ( 𝑠s 𝑟 ) ) ) = ( 𝑥𝑖 ↦ ( 𝑔 ∈ ( 𝑏m 𝑖 ) ↦ ( 𝑔𝑥 ) ) ) ) ) ) )
17 16 elmpocl2 ( 𝑎 ∈ ( 𝐼 evalSub 𝑆 ) → 𝑆 ∈ CRing )
18 17 a1d ( 𝑎 ∈ ( 𝐼 evalSub 𝑆 ) → ( 𝐼 ∈ V → 𝑆 ∈ CRing ) )
19 18 exlimiv ( ∃ 𝑎 𝑎 ∈ ( 𝐼 evalSub 𝑆 ) → ( 𝐼 ∈ V → 𝑆 ∈ CRing ) )
20 15 19 sylbi ( ( 𝐼 evalSub 𝑆 ) ≠ ∅ → ( 𝐼 ∈ V → 𝑆 ∈ CRing ) )
21 14 20 jcai ( ( 𝐼 evalSub 𝑆 ) ≠ ∅ → ( 𝐼 ∈ V ∧ 𝑆 ∈ CRing ) )
22 11 21 syl ( ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) ≠ ∅ → ( 𝐼 ∈ V ∧ 𝑆 ∈ CRing ) )
23 fvex ( Base ‘ 𝑠 ) ∈ V
24 nfcv 𝑏 ( SubRing ‘ 𝑠 )
25 nfcsb1v 𝑏 ( Base ‘ 𝑠 ) / 𝑏 ( 𝑖 mPoly ( 𝑠s 𝑟 ) ) / 𝑤 ( 𝑓 ∈ ( 𝑤 RingHom ( 𝑠s ( 𝑏m 𝑖 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥𝑟 ↦ ( ( 𝑏m 𝑖 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝑖 mVar ( 𝑠s 𝑟 ) ) ) = ( 𝑥𝑖 ↦ ( 𝑔 ∈ ( 𝑏m 𝑖 ) ↦ ( 𝑔𝑥 ) ) ) ) )
26 24 25 nfmpt 𝑏 ( 𝑟 ∈ ( SubRing ‘ 𝑠 ) ↦ ( Base ‘ 𝑠 ) / 𝑏 ( 𝑖 mPoly ( 𝑠s 𝑟 ) ) / 𝑤 ( 𝑓 ∈ ( 𝑤 RingHom ( 𝑠s ( 𝑏m 𝑖 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥𝑟 ↦ ( ( 𝑏m 𝑖 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝑖 mVar ( 𝑠s 𝑟 ) ) ) = ( 𝑥𝑖 ↦ ( 𝑔 ∈ ( 𝑏m 𝑖 ) ↦ ( 𝑔𝑥 ) ) ) ) ) )
27 csbeq1a ( 𝑏 = ( Base ‘ 𝑠 ) → ( 𝑖 mPoly ( 𝑠s 𝑟 ) ) / 𝑤 ( 𝑓 ∈ ( 𝑤 RingHom ( 𝑠s ( 𝑏m 𝑖 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥𝑟 ↦ ( ( 𝑏m 𝑖 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝑖 mVar ( 𝑠s 𝑟 ) ) ) = ( 𝑥𝑖 ↦ ( 𝑔 ∈ ( 𝑏m 𝑖 ) ↦ ( 𝑔𝑥 ) ) ) ) ) = ( Base ‘ 𝑠 ) / 𝑏 ( 𝑖 mPoly ( 𝑠s 𝑟 ) ) / 𝑤 ( 𝑓 ∈ ( 𝑤 RingHom ( 𝑠s ( 𝑏m 𝑖 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥𝑟 ↦ ( ( 𝑏m 𝑖 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝑖 mVar ( 𝑠s 𝑟 ) ) ) = ( 𝑥𝑖 ↦ ( 𝑔 ∈ ( 𝑏m 𝑖 ) ↦ ( 𝑔𝑥 ) ) ) ) ) )
28 27 mpteq2dv ( 𝑏 = ( Base ‘ 𝑠 ) → ( 𝑟 ∈ ( SubRing ‘ 𝑠 ) ↦ ( 𝑖 mPoly ( 𝑠s 𝑟 ) ) / 𝑤 ( 𝑓 ∈ ( 𝑤 RingHom ( 𝑠s ( 𝑏m 𝑖 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥𝑟 ↦ ( ( 𝑏m 𝑖 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝑖 mVar ( 𝑠s 𝑟 ) ) ) = ( 𝑥𝑖 ↦ ( 𝑔 ∈ ( 𝑏m 𝑖 ) ↦ ( 𝑔𝑥 ) ) ) ) ) ) = ( 𝑟 ∈ ( SubRing ‘ 𝑠 ) ↦ ( Base ‘ 𝑠 ) / 𝑏 ( 𝑖 mPoly ( 𝑠s 𝑟 ) ) / 𝑤 ( 𝑓 ∈ ( 𝑤 RingHom ( 𝑠s ( 𝑏m 𝑖 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥𝑟 ↦ ( ( 𝑏m 𝑖 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝑖 mVar ( 𝑠s 𝑟 ) ) ) = ( 𝑥𝑖 ↦ ( 𝑔 ∈ ( 𝑏m 𝑖 ) ↦ ( 𝑔𝑥 ) ) ) ) ) ) )
29 23 26 28 csbief ( Base ‘ 𝑠 ) / 𝑏 ( 𝑟 ∈ ( SubRing ‘ 𝑠 ) ↦ ( 𝑖 mPoly ( 𝑠s 𝑟 ) ) / 𝑤 ( 𝑓 ∈ ( 𝑤 RingHom ( 𝑠s ( 𝑏m 𝑖 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥𝑟 ↦ ( ( 𝑏m 𝑖 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝑖 mVar ( 𝑠s 𝑟 ) ) ) = ( 𝑥𝑖 ↦ ( 𝑔 ∈ ( 𝑏m 𝑖 ) ↦ ( 𝑔𝑥 ) ) ) ) ) ) = ( 𝑟 ∈ ( SubRing ‘ 𝑠 ) ↦ ( Base ‘ 𝑠 ) / 𝑏 ( 𝑖 mPoly ( 𝑠s 𝑟 ) ) / 𝑤 ( 𝑓 ∈ ( 𝑤 RingHom ( 𝑠s ( 𝑏m 𝑖 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥𝑟 ↦ ( ( 𝑏m 𝑖 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝑖 mVar ( 𝑠s 𝑟 ) ) ) = ( 𝑥𝑖 ↦ ( 𝑔 ∈ ( 𝑏m 𝑖 ) ↦ ( 𝑔𝑥 ) ) ) ) ) )
30 fveq2 ( 𝑠 = 𝑆 → ( SubRing ‘ 𝑠 ) = ( SubRing ‘ 𝑆 ) )
31 30 adantl ( ( 𝑖 = 𝐼𝑠 = 𝑆 ) → ( SubRing ‘ 𝑠 ) = ( SubRing ‘ 𝑆 ) )
32 fveq2 ( 𝑠 = 𝑆 → ( Base ‘ 𝑠 ) = ( Base ‘ 𝑆 ) )
33 32 adantl ( ( 𝑖 = 𝐼𝑠 = 𝑆 ) → ( Base ‘ 𝑠 ) = ( Base ‘ 𝑆 ) )
34 33 csbeq1d ( ( 𝑖 = 𝐼𝑠 = 𝑆 ) → ( Base ‘ 𝑠 ) / 𝑏 ( 𝑖 mPoly ( 𝑠s 𝑟 ) ) / 𝑤 ( 𝑓 ∈ ( 𝑤 RingHom ( 𝑠s ( 𝑏m 𝑖 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥𝑟 ↦ ( ( 𝑏m 𝑖 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝑖 mVar ( 𝑠s 𝑟 ) ) ) = ( 𝑥𝑖 ↦ ( 𝑔 ∈ ( 𝑏m 𝑖 ) ↦ ( 𝑔𝑥 ) ) ) ) ) = ( Base ‘ 𝑆 ) / 𝑏 ( 𝑖 mPoly ( 𝑠s 𝑟 ) ) / 𝑤 ( 𝑓 ∈ ( 𝑤 RingHom ( 𝑠s ( 𝑏m 𝑖 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥𝑟 ↦ ( ( 𝑏m 𝑖 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝑖 mVar ( 𝑠s 𝑟 ) ) ) = ( 𝑥𝑖 ↦ ( 𝑔 ∈ ( 𝑏m 𝑖 ) ↦ ( 𝑔𝑥 ) ) ) ) ) )
35 id ( 𝑖 = 𝐼𝑖 = 𝐼 )
36 oveq1 ( 𝑠 = 𝑆 → ( 𝑠s 𝑟 ) = ( 𝑆s 𝑟 ) )
37 35 36 oveqan12d ( ( 𝑖 = 𝐼𝑠 = 𝑆 ) → ( 𝑖 mPoly ( 𝑠s 𝑟 ) ) = ( 𝐼 mPoly ( 𝑆s 𝑟 ) ) )
38 37 csbeq1d ( ( 𝑖 = 𝐼𝑠 = 𝑆 ) → ( 𝑖 mPoly ( 𝑠s 𝑟 ) ) / 𝑤 ( 𝑓 ∈ ( 𝑤 RingHom ( 𝑠s ( 𝑏m 𝑖 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥𝑟 ↦ ( ( 𝑏m 𝑖 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝑖 mVar ( 𝑠s 𝑟 ) ) ) = ( 𝑥𝑖 ↦ ( 𝑔 ∈ ( 𝑏m 𝑖 ) ↦ ( 𝑔𝑥 ) ) ) ) ) = ( 𝐼 mPoly ( 𝑆s 𝑟 ) ) / 𝑤 ( 𝑓 ∈ ( 𝑤 RingHom ( 𝑠s ( 𝑏m 𝑖 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥𝑟 ↦ ( ( 𝑏m 𝑖 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝑖 mVar ( 𝑠s 𝑟 ) ) ) = ( 𝑥𝑖 ↦ ( 𝑔 ∈ ( 𝑏m 𝑖 ) ↦ ( 𝑔𝑥 ) ) ) ) ) )
39 id ( 𝑠 = 𝑆𝑠 = 𝑆 )
40 oveq2 ( 𝑖 = 𝐼 → ( 𝑏m 𝑖 ) = ( 𝑏m 𝐼 ) )
41 39 40 oveqan12rd ( ( 𝑖 = 𝐼𝑠 = 𝑆 ) → ( 𝑠s ( 𝑏m 𝑖 ) ) = ( 𝑆s ( 𝑏m 𝐼 ) ) )
42 41 oveq2d ( ( 𝑖 = 𝐼𝑠 = 𝑆 ) → ( 𝑤 RingHom ( 𝑠s ( 𝑏m 𝑖 ) ) ) = ( 𝑤 RingHom ( 𝑆s ( 𝑏m 𝐼 ) ) ) )
43 40 adantr ( ( 𝑖 = 𝐼𝑠 = 𝑆 ) → ( 𝑏m 𝑖 ) = ( 𝑏m 𝐼 ) )
44 43 xpeq1d ( ( 𝑖 = 𝐼𝑠 = 𝑆 ) → ( ( 𝑏m 𝑖 ) × { 𝑥 } ) = ( ( 𝑏m 𝐼 ) × { 𝑥 } ) )
45 44 mpteq2dv ( ( 𝑖 = 𝐼𝑠 = 𝑆 ) → ( 𝑥𝑟 ↦ ( ( 𝑏m 𝑖 ) × { 𝑥 } ) ) = ( 𝑥𝑟 ↦ ( ( 𝑏m 𝐼 ) × { 𝑥 } ) ) )
46 45 eqeq2d ( ( 𝑖 = 𝐼𝑠 = 𝑆 ) → ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥𝑟 ↦ ( ( 𝑏m 𝑖 ) × { 𝑥 } ) ) ↔ ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥𝑟 ↦ ( ( 𝑏m 𝐼 ) × { 𝑥 } ) ) ) )
47 35 36 oveqan12d ( ( 𝑖 = 𝐼𝑠 = 𝑆 ) → ( 𝑖 mVar ( 𝑠s 𝑟 ) ) = ( 𝐼 mVar ( 𝑆s 𝑟 ) ) )
48 47 coeq2d ( ( 𝑖 = 𝐼𝑠 = 𝑆 ) → ( 𝑓 ∘ ( 𝑖 mVar ( 𝑠s 𝑟 ) ) ) = ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆s 𝑟 ) ) ) )
49 simpl ( ( 𝑖 = 𝐼𝑠 = 𝑆 ) → 𝑖 = 𝐼 )
50 43 mpteq1d ( ( 𝑖 = 𝐼𝑠 = 𝑆 ) → ( 𝑔 ∈ ( 𝑏m 𝑖 ) ↦ ( 𝑔𝑥 ) ) = ( 𝑔 ∈ ( 𝑏m 𝐼 ) ↦ ( 𝑔𝑥 ) ) )
51 49 50 mpteq12dv ( ( 𝑖 = 𝐼𝑠 = 𝑆 ) → ( 𝑥𝑖 ↦ ( 𝑔 ∈ ( 𝑏m 𝑖 ) ↦ ( 𝑔𝑥 ) ) ) = ( 𝑥𝐼 ↦ ( 𝑔 ∈ ( 𝑏m 𝐼 ) ↦ ( 𝑔𝑥 ) ) ) )
52 48 51 eqeq12d ( ( 𝑖 = 𝐼𝑠 = 𝑆 ) → ( ( 𝑓 ∘ ( 𝑖 mVar ( 𝑠s 𝑟 ) ) ) = ( 𝑥𝑖 ↦ ( 𝑔 ∈ ( 𝑏m 𝑖 ) ↦ ( 𝑔𝑥 ) ) ) ↔ ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆s 𝑟 ) ) ) = ( 𝑥𝐼 ↦ ( 𝑔 ∈ ( 𝑏m 𝐼 ) ↦ ( 𝑔𝑥 ) ) ) ) )
53 46 52 anbi12d ( ( 𝑖 = 𝐼𝑠 = 𝑆 ) → ( ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥𝑟 ↦ ( ( 𝑏m 𝑖 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝑖 mVar ( 𝑠s 𝑟 ) ) ) = ( 𝑥𝑖 ↦ ( 𝑔 ∈ ( 𝑏m 𝑖 ) ↦ ( 𝑔𝑥 ) ) ) ) ↔ ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥𝑟 ↦ ( ( 𝑏m 𝐼 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆s 𝑟 ) ) ) = ( 𝑥𝐼 ↦ ( 𝑔 ∈ ( 𝑏m 𝐼 ) ↦ ( 𝑔𝑥 ) ) ) ) ) )
54 42 53 riotaeqbidv ( ( 𝑖 = 𝐼𝑠 = 𝑆 ) → ( 𝑓 ∈ ( 𝑤 RingHom ( 𝑠s ( 𝑏m 𝑖 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥𝑟 ↦ ( ( 𝑏m 𝑖 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝑖 mVar ( 𝑠s 𝑟 ) ) ) = ( 𝑥𝑖 ↦ ( 𝑔 ∈ ( 𝑏m 𝑖 ) ↦ ( 𝑔𝑥 ) ) ) ) ) = ( 𝑓 ∈ ( 𝑤 RingHom ( 𝑆s ( 𝑏m 𝐼 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥𝑟 ↦ ( ( 𝑏m 𝐼 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆s 𝑟 ) ) ) = ( 𝑥𝐼 ↦ ( 𝑔 ∈ ( 𝑏m 𝐼 ) ↦ ( 𝑔𝑥 ) ) ) ) ) )
55 54 csbeq2dv ( ( 𝑖 = 𝐼𝑠 = 𝑆 ) → ( 𝐼 mPoly ( 𝑆s 𝑟 ) ) / 𝑤 ( 𝑓 ∈ ( 𝑤 RingHom ( 𝑠s ( 𝑏m 𝑖 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥𝑟 ↦ ( ( 𝑏m 𝑖 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝑖 mVar ( 𝑠s 𝑟 ) ) ) = ( 𝑥𝑖 ↦ ( 𝑔 ∈ ( 𝑏m 𝑖 ) ↦ ( 𝑔𝑥 ) ) ) ) ) = ( 𝐼 mPoly ( 𝑆s 𝑟 ) ) / 𝑤 ( 𝑓 ∈ ( 𝑤 RingHom ( 𝑆s ( 𝑏m 𝐼 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥𝑟 ↦ ( ( 𝑏m 𝐼 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆s 𝑟 ) ) ) = ( 𝑥𝐼 ↦ ( 𝑔 ∈ ( 𝑏m 𝐼 ) ↦ ( 𝑔𝑥 ) ) ) ) ) )
56 38 55 eqtrd ( ( 𝑖 = 𝐼𝑠 = 𝑆 ) → ( 𝑖 mPoly ( 𝑠s 𝑟 ) ) / 𝑤 ( 𝑓 ∈ ( 𝑤 RingHom ( 𝑠s ( 𝑏m 𝑖 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥𝑟 ↦ ( ( 𝑏m 𝑖 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝑖 mVar ( 𝑠s 𝑟 ) ) ) = ( 𝑥𝑖 ↦ ( 𝑔 ∈ ( 𝑏m 𝑖 ) ↦ ( 𝑔𝑥 ) ) ) ) ) = ( 𝐼 mPoly ( 𝑆s 𝑟 ) ) / 𝑤 ( 𝑓 ∈ ( 𝑤 RingHom ( 𝑆s ( 𝑏m 𝐼 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥𝑟 ↦ ( ( 𝑏m 𝐼 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆s 𝑟 ) ) ) = ( 𝑥𝐼 ↦ ( 𝑔 ∈ ( 𝑏m 𝐼 ) ↦ ( 𝑔𝑥 ) ) ) ) ) )
57 56 csbeq2dv ( ( 𝑖 = 𝐼𝑠 = 𝑆 ) → ( Base ‘ 𝑆 ) / 𝑏 ( 𝑖 mPoly ( 𝑠s 𝑟 ) ) / 𝑤 ( 𝑓 ∈ ( 𝑤 RingHom ( 𝑠s ( 𝑏m 𝑖 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥𝑟 ↦ ( ( 𝑏m 𝑖 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝑖 mVar ( 𝑠s 𝑟 ) ) ) = ( 𝑥𝑖 ↦ ( 𝑔 ∈ ( 𝑏m 𝑖 ) ↦ ( 𝑔𝑥 ) ) ) ) ) = ( Base ‘ 𝑆 ) / 𝑏 ( 𝐼 mPoly ( 𝑆s 𝑟 ) ) / 𝑤 ( 𝑓 ∈ ( 𝑤 RingHom ( 𝑆s ( 𝑏m 𝐼 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥𝑟 ↦ ( ( 𝑏m 𝐼 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆s 𝑟 ) ) ) = ( 𝑥𝐼 ↦ ( 𝑔 ∈ ( 𝑏m 𝐼 ) ↦ ( 𝑔𝑥 ) ) ) ) ) )
58 34 57 eqtrd ( ( 𝑖 = 𝐼𝑠 = 𝑆 ) → ( Base ‘ 𝑠 ) / 𝑏 ( 𝑖 mPoly ( 𝑠s 𝑟 ) ) / 𝑤 ( 𝑓 ∈ ( 𝑤 RingHom ( 𝑠s ( 𝑏m 𝑖 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥𝑟 ↦ ( ( 𝑏m 𝑖 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝑖 mVar ( 𝑠s 𝑟 ) ) ) = ( 𝑥𝑖 ↦ ( 𝑔 ∈ ( 𝑏m 𝑖 ) ↦ ( 𝑔𝑥 ) ) ) ) ) = ( Base ‘ 𝑆 ) / 𝑏 ( 𝐼 mPoly ( 𝑆s 𝑟 ) ) / 𝑤 ( 𝑓 ∈ ( 𝑤 RingHom ( 𝑆s ( 𝑏m 𝐼 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥𝑟 ↦ ( ( 𝑏m 𝐼 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆s 𝑟 ) ) ) = ( 𝑥𝐼 ↦ ( 𝑔 ∈ ( 𝑏m 𝐼 ) ↦ ( 𝑔𝑥 ) ) ) ) ) )
59 31 58 mpteq12dv ( ( 𝑖 = 𝐼𝑠 = 𝑆 ) → ( 𝑟 ∈ ( SubRing ‘ 𝑠 ) ↦ ( Base ‘ 𝑠 ) / 𝑏 ( 𝑖 mPoly ( 𝑠s 𝑟 ) ) / 𝑤 ( 𝑓 ∈ ( 𝑤 RingHom ( 𝑠s ( 𝑏m 𝑖 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥𝑟 ↦ ( ( 𝑏m 𝑖 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝑖 mVar ( 𝑠s 𝑟 ) ) ) = ( 𝑥𝑖 ↦ ( 𝑔 ∈ ( 𝑏m 𝑖 ) ↦ ( 𝑔𝑥 ) ) ) ) ) ) = ( 𝑟 ∈ ( SubRing ‘ 𝑆 ) ↦ ( Base ‘ 𝑆 ) / 𝑏 ( 𝐼 mPoly ( 𝑆s 𝑟 ) ) / 𝑤 ( 𝑓 ∈ ( 𝑤 RingHom ( 𝑆s ( 𝑏m 𝐼 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥𝑟 ↦ ( ( 𝑏m 𝐼 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆s 𝑟 ) ) ) = ( 𝑥𝐼 ↦ ( 𝑔 ∈ ( 𝑏m 𝐼 ) ↦ ( 𝑔𝑥 ) ) ) ) ) ) )
60 29 59 eqtrid ( ( 𝑖 = 𝐼𝑠 = 𝑆 ) → ( Base ‘ 𝑠 ) / 𝑏 ( 𝑟 ∈ ( SubRing ‘ 𝑠 ) ↦ ( 𝑖 mPoly ( 𝑠s 𝑟 ) ) / 𝑤 ( 𝑓 ∈ ( 𝑤 RingHom ( 𝑠s ( 𝑏m 𝑖 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥𝑟 ↦ ( ( 𝑏m 𝑖 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝑖 mVar ( 𝑠s 𝑟 ) ) ) = ( 𝑥𝑖 ↦ ( 𝑔 ∈ ( 𝑏m 𝑖 ) ↦ ( 𝑔𝑥 ) ) ) ) ) ) = ( 𝑟 ∈ ( SubRing ‘ 𝑆 ) ↦ ( Base ‘ 𝑆 ) / 𝑏 ( 𝐼 mPoly ( 𝑆s 𝑟 ) ) / 𝑤 ( 𝑓 ∈ ( 𝑤 RingHom ( 𝑆s ( 𝑏m 𝐼 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥𝑟 ↦ ( ( 𝑏m 𝐼 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆s 𝑟 ) ) ) = ( 𝑥𝐼 ↦ ( 𝑔 ∈ ( 𝑏m 𝐼 ) ↦ ( 𝑔𝑥 ) ) ) ) ) ) )
61 fvex ( SubRing ‘ 𝑆 ) ∈ V
62 61 mptex ( 𝑟 ∈ ( SubRing ‘ 𝑆 ) ↦ ( Base ‘ 𝑆 ) / 𝑏 ( 𝐼 mPoly ( 𝑆s 𝑟 ) ) / 𝑤 ( 𝑓 ∈ ( 𝑤 RingHom ( 𝑆s ( 𝑏m 𝐼 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥𝑟 ↦ ( ( 𝑏m 𝐼 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆s 𝑟 ) ) ) = ( 𝑥𝐼 ↦ ( 𝑔 ∈ ( 𝑏m 𝐼 ) ↦ ( 𝑔𝑥 ) ) ) ) ) ) ∈ V
63 60 16 62 ovmpoa ( ( 𝐼 ∈ V ∧ 𝑆 ∈ CRing ) → ( 𝐼 evalSub 𝑆 ) = ( 𝑟 ∈ ( SubRing ‘ 𝑆 ) ↦ ( Base ‘ 𝑆 ) / 𝑏 ( 𝐼 mPoly ( 𝑆s 𝑟 ) ) / 𝑤 ( 𝑓 ∈ ( 𝑤 RingHom ( 𝑆s ( 𝑏m 𝐼 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥𝑟 ↦ ( ( 𝑏m 𝐼 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆s 𝑟 ) ) ) = ( 𝑥𝐼 ↦ ( 𝑔 ∈ ( 𝑏m 𝐼 ) ↦ ( 𝑔𝑥 ) ) ) ) ) ) )
64 63 dmeqd ( ( 𝐼 ∈ V ∧ 𝑆 ∈ CRing ) → dom ( 𝐼 evalSub 𝑆 ) = dom ( 𝑟 ∈ ( SubRing ‘ 𝑆 ) ↦ ( Base ‘ 𝑆 ) / 𝑏 ( 𝐼 mPoly ( 𝑆s 𝑟 ) ) / 𝑤 ( 𝑓 ∈ ( 𝑤 RingHom ( 𝑆s ( 𝑏m 𝐼 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥𝑟 ↦ ( ( 𝑏m 𝐼 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆s 𝑟 ) ) ) = ( 𝑥𝐼 ↦ ( 𝑔 ∈ ( 𝑏m 𝐼 ) ↦ ( 𝑔𝑥 ) ) ) ) ) ) )
65 eqid ( 𝑟 ∈ ( SubRing ‘ 𝑆 ) ↦ ( Base ‘ 𝑆 ) / 𝑏 ( 𝐼 mPoly ( 𝑆s 𝑟 ) ) / 𝑤 ( 𝑓 ∈ ( 𝑤 RingHom ( 𝑆s ( 𝑏m 𝐼 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥𝑟 ↦ ( ( 𝑏m 𝐼 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆s 𝑟 ) ) ) = ( 𝑥𝐼 ↦ ( 𝑔 ∈ ( 𝑏m 𝐼 ) ↦ ( 𝑔𝑥 ) ) ) ) ) ) = ( 𝑟 ∈ ( SubRing ‘ 𝑆 ) ↦ ( Base ‘ 𝑆 ) / 𝑏 ( 𝐼 mPoly ( 𝑆s 𝑟 ) ) / 𝑤 ( 𝑓 ∈ ( 𝑤 RingHom ( 𝑆s ( 𝑏m 𝐼 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥𝑟 ↦ ( ( 𝑏m 𝐼 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆s 𝑟 ) ) ) = ( 𝑥𝐼 ↦ ( 𝑔 ∈ ( 𝑏m 𝐼 ) ↦ ( 𝑔𝑥 ) ) ) ) ) )
66 65 dmmptss dom ( 𝑟 ∈ ( SubRing ‘ 𝑆 ) ↦ ( Base ‘ 𝑆 ) / 𝑏 ( 𝐼 mPoly ( 𝑆s 𝑟 ) ) / 𝑤 ( 𝑓 ∈ ( 𝑤 RingHom ( 𝑆s ( 𝑏m 𝐼 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥𝑟 ↦ ( ( 𝑏m 𝐼 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆s 𝑟 ) ) ) = ( 𝑥𝐼 ↦ ( 𝑔 ∈ ( 𝑏m 𝐼 ) ↦ ( 𝑔𝑥 ) ) ) ) ) ) ⊆ ( SubRing ‘ 𝑆 )
67 64 66 eqsstrdi ( ( 𝐼 ∈ V ∧ 𝑆 ∈ CRing ) → dom ( 𝐼 evalSub 𝑆 ) ⊆ ( SubRing ‘ 𝑆 ) )
68 67 ssneld ( ( 𝐼 ∈ V ∧ 𝑆 ∈ CRing ) → ( ¬ 𝑅 ∈ ( SubRing ‘ 𝑆 ) → ¬ 𝑅 ∈ dom ( 𝐼 evalSub 𝑆 ) ) )
69 ndmfv ( ¬ 𝑅 ∈ dom ( 𝐼 evalSub 𝑆 ) → ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) = ∅ )
70 68 69 syl6 ( ( 𝐼 ∈ V ∧ 𝑆 ∈ CRing ) → ( ¬ 𝑅 ∈ ( SubRing ‘ 𝑆 ) → ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) = ∅ ) )
71 70 necon1ad ( ( 𝐼 ∈ V ∧ 𝑆 ∈ CRing ) → ( ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) ≠ ∅ → 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) )
72 71 com12 ( ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) ≠ ∅ → ( ( 𝐼 ∈ V ∧ 𝑆 ∈ CRing ) → 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) )
73 22 72 jcai ( ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) ≠ ∅ → ( ( 𝐼 ∈ V ∧ 𝑆 ∈ CRing ) ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) )
74 df-3an ( ( 𝐼 ∈ V ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) ↔ ( ( 𝐼 ∈ V ∧ 𝑆 ∈ CRing ) ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) )
75 73 74 sylibr ( ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) ≠ ∅ → ( 𝐼 ∈ V ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) )
76 3 7 75 3syl ( 𝑋𝑄 → ( 𝐼 ∈ V ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) )