| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mpfrcl.q | ⊢ 𝑄  =  ran  ( ( 𝐼  evalSub  𝑆 ) ‘ 𝑅 ) | 
						
							| 2 |  | ne0i | ⊢ ( 𝑋  ∈  ran  ( ( 𝐼  evalSub  𝑆 ) ‘ 𝑅 )  →  ran  ( ( 𝐼  evalSub  𝑆 ) ‘ 𝑅 )  ≠  ∅ ) | 
						
							| 3 | 2 1 | eleq2s | ⊢ ( 𝑋  ∈  𝑄  →  ran  ( ( 𝐼  evalSub  𝑆 ) ‘ 𝑅 )  ≠  ∅ ) | 
						
							| 4 |  | rneq | ⊢ ( ( ( 𝐼  evalSub  𝑆 ) ‘ 𝑅 )  =  ∅  →  ran  ( ( 𝐼  evalSub  𝑆 ) ‘ 𝑅 )  =  ran  ∅ ) | 
						
							| 5 |  | rn0 | ⊢ ran  ∅  =  ∅ | 
						
							| 6 | 4 5 | eqtrdi | ⊢ ( ( ( 𝐼  evalSub  𝑆 ) ‘ 𝑅 )  =  ∅  →  ran  ( ( 𝐼  evalSub  𝑆 ) ‘ 𝑅 )  =  ∅ ) | 
						
							| 7 | 6 | necon3i | ⊢ ( ran  ( ( 𝐼  evalSub  𝑆 ) ‘ 𝑅 )  ≠  ∅  →  ( ( 𝐼  evalSub  𝑆 ) ‘ 𝑅 )  ≠  ∅ ) | 
						
							| 8 |  | fveq1 | ⊢ ( ( 𝐼  evalSub  𝑆 )  =  ∅  →  ( ( 𝐼  evalSub  𝑆 ) ‘ 𝑅 )  =  ( ∅ ‘ 𝑅 ) ) | 
						
							| 9 |  | 0fv | ⊢ ( ∅ ‘ 𝑅 )  =  ∅ | 
						
							| 10 | 8 9 | eqtrdi | ⊢ ( ( 𝐼  evalSub  𝑆 )  =  ∅  →  ( ( 𝐼  evalSub  𝑆 ) ‘ 𝑅 )  =  ∅ ) | 
						
							| 11 | 10 | necon3i | ⊢ ( ( ( 𝐼  evalSub  𝑆 ) ‘ 𝑅 )  ≠  ∅  →  ( 𝐼  evalSub  𝑆 )  ≠  ∅ ) | 
						
							| 12 |  | reldmevls | ⊢ Rel  dom   evalSub | 
						
							| 13 | 12 | ovprc1 | ⊢ ( ¬  𝐼  ∈  V  →  ( 𝐼  evalSub  𝑆 )  =  ∅ ) | 
						
							| 14 | 13 | necon1ai | ⊢ ( ( 𝐼  evalSub  𝑆 )  ≠  ∅  →  𝐼  ∈  V ) | 
						
							| 15 |  | n0 | ⊢ ( ( 𝐼  evalSub  𝑆 )  ≠  ∅  ↔  ∃ 𝑎 𝑎  ∈  ( 𝐼  evalSub  𝑆 ) ) | 
						
							| 16 |  | df-evls | ⊢  evalSub   =  ( 𝑖  ∈  V ,  𝑠  ∈  CRing  ↦  ⦋ ( Base ‘ 𝑠 )  /  𝑏 ⦌ ( 𝑟  ∈  ( SubRing ‘ 𝑠 )  ↦  ⦋ ( 𝑖  mPoly  ( 𝑠  ↾s  𝑟 ) )  /  𝑤 ⦌ ( ℩ 𝑓  ∈  ( 𝑤  RingHom  ( 𝑠  ↑s  ( 𝑏  ↑m  𝑖 ) ) ) ( ( 𝑓  ∘  ( algSc ‘ 𝑤 ) )  =  ( 𝑥  ∈  𝑟  ↦  ( ( 𝑏  ↑m  𝑖 )  ×  { 𝑥 } ) )  ∧  ( 𝑓  ∘  ( 𝑖  mVar  ( 𝑠  ↾s  𝑟 ) ) )  =  ( 𝑥  ∈  𝑖  ↦  ( 𝑔  ∈  ( 𝑏  ↑m  𝑖 )  ↦  ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) ) | 
						
							| 17 | 16 | elmpocl2 | ⊢ ( 𝑎  ∈  ( 𝐼  evalSub  𝑆 )  →  𝑆  ∈  CRing ) | 
						
							| 18 | 17 | a1d | ⊢ ( 𝑎  ∈  ( 𝐼  evalSub  𝑆 )  →  ( 𝐼  ∈  V  →  𝑆  ∈  CRing ) ) | 
						
							| 19 | 18 | exlimiv | ⊢ ( ∃ 𝑎 𝑎  ∈  ( 𝐼  evalSub  𝑆 )  →  ( 𝐼  ∈  V  →  𝑆  ∈  CRing ) ) | 
						
							| 20 | 15 19 | sylbi | ⊢ ( ( 𝐼  evalSub  𝑆 )  ≠  ∅  →  ( 𝐼  ∈  V  →  𝑆  ∈  CRing ) ) | 
						
							| 21 | 14 20 | jcai | ⊢ ( ( 𝐼  evalSub  𝑆 )  ≠  ∅  →  ( 𝐼  ∈  V  ∧  𝑆  ∈  CRing ) ) | 
						
							| 22 | 11 21 | syl | ⊢ ( ( ( 𝐼  evalSub  𝑆 ) ‘ 𝑅 )  ≠  ∅  →  ( 𝐼  ∈  V  ∧  𝑆  ∈  CRing ) ) | 
						
							| 23 |  | fvex | ⊢ ( Base ‘ 𝑠 )  ∈  V | 
						
							| 24 |  | nfcv | ⊢ Ⅎ 𝑏 ( SubRing ‘ 𝑠 ) | 
						
							| 25 |  | nfcsb1v | ⊢ Ⅎ 𝑏 ⦋ ( Base ‘ 𝑠 )  /  𝑏 ⦌ ⦋ ( 𝑖  mPoly  ( 𝑠  ↾s  𝑟 ) )  /  𝑤 ⦌ ( ℩ 𝑓  ∈  ( 𝑤  RingHom  ( 𝑠  ↑s  ( 𝑏  ↑m  𝑖 ) ) ) ( ( 𝑓  ∘  ( algSc ‘ 𝑤 ) )  =  ( 𝑥  ∈  𝑟  ↦  ( ( 𝑏  ↑m  𝑖 )  ×  { 𝑥 } ) )  ∧  ( 𝑓  ∘  ( 𝑖  mVar  ( 𝑠  ↾s  𝑟 ) ) )  =  ( 𝑥  ∈  𝑖  ↦  ( 𝑔  ∈  ( 𝑏  ↑m  𝑖 )  ↦  ( 𝑔 ‘ 𝑥 ) ) ) ) ) | 
						
							| 26 | 24 25 | nfmpt | ⊢ Ⅎ 𝑏 ( 𝑟  ∈  ( SubRing ‘ 𝑠 )  ↦  ⦋ ( Base ‘ 𝑠 )  /  𝑏 ⦌ ⦋ ( 𝑖  mPoly  ( 𝑠  ↾s  𝑟 ) )  /  𝑤 ⦌ ( ℩ 𝑓  ∈  ( 𝑤  RingHom  ( 𝑠  ↑s  ( 𝑏  ↑m  𝑖 ) ) ) ( ( 𝑓  ∘  ( algSc ‘ 𝑤 ) )  =  ( 𝑥  ∈  𝑟  ↦  ( ( 𝑏  ↑m  𝑖 )  ×  { 𝑥 } ) )  ∧  ( 𝑓  ∘  ( 𝑖  mVar  ( 𝑠  ↾s  𝑟 ) ) )  =  ( 𝑥  ∈  𝑖  ↦  ( 𝑔  ∈  ( 𝑏  ↑m  𝑖 )  ↦  ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) | 
						
							| 27 |  | csbeq1a | ⊢ ( 𝑏  =  ( Base ‘ 𝑠 )  →  ⦋ ( 𝑖  mPoly  ( 𝑠  ↾s  𝑟 ) )  /  𝑤 ⦌ ( ℩ 𝑓  ∈  ( 𝑤  RingHom  ( 𝑠  ↑s  ( 𝑏  ↑m  𝑖 ) ) ) ( ( 𝑓  ∘  ( algSc ‘ 𝑤 ) )  =  ( 𝑥  ∈  𝑟  ↦  ( ( 𝑏  ↑m  𝑖 )  ×  { 𝑥 } ) )  ∧  ( 𝑓  ∘  ( 𝑖  mVar  ( 𝑠  ↾s  𝑟 ) ) )  =  ( 𝑥  ∈  𝑖  ↦  ( 𝑔  ∈  ( 𝑏  ↑m  𝑖 )  ↦  ( 𝑔 ‘ 𝑥 ) ) ) ) )  =  ⦋ ( Base ‘ 𝑠 )  /  𝑏 ⦌ ⦋ ( 𝑖  mPoly  ( 𝑠  ↾s  𝑟 ) )  /  𝑤 ⦌ ( ℩ 𝑓  ∈  ( 𝑤  RingHom  ( 𝑠  ↑s  ( 𝑏  ↑m  𝑖 ) ) ) ( ( 𝑓  ∘  ( algSc ‘ 𝑤 ) )  =  ( 𝑥  ∈  𝑟  ↦  ( ( 𝑏  ↑m  𝑖 )  ×  { 𝑥 } ) )  ∧  ( 𝑓  ∘  ( 𝑖  mVar  ( 𝑠  ↾s  𝑟 ) ) )  =  ( 𝑥  ∈  𝑖  ↦  ( 𝑔  ∈  ( 𝑏  ↑m  𝑖 )  ↦  ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) | 
						
							| 28 | 27 | mpteq2dv | ⊢ ( 𝑏  =  ( Base ‘ 𝑠 )  →  ( 𝑟  ∈  ( SubRing ‘ 𝑠 )  ↦  ⦋ ( 𝑖  mPoly  ( 𝑠  ↾s  𝑟 ) )  /  𝑤 ⦌ ( ℩ 𝑓  ∈  ( 𝑤  RingHom  ( 𝑠  ↑s  ( 𝑏  ↑m  𝑖 ) ) ) ( ( 𝑓  ∘  ( algSc ‘ 𝑤 ) )  =  ( 𝑥  ∈  𝑟  ↦  ( ( 𝑏  ↑m  𝑖 )  ×  { 𝑥 } ) )  ∧  ( 𝑓  ∘  ( 𝑖  mVar  ( 𝑠  ↾s  𝑟 ) ) )  =  ( 𝑥  ∈  𝑖  ↦  ( 𝑔  ∈  ( 𝑏  ↑m  𝑖 )  ↦  ( 𝑔 ‘ 𝑥 ) ) ) ) ) )  =  ( 𝑟  ∈  ( SubRing ‘ 𝑠 )  ↦  ⦋ ( Base ‘ 𝑠 )  /  𝑏 ⦌ ⦋ ( 𝑖  mPoly  ( 𝑠  ↾s  𝑟 ) )  /  𝑤 ⦌ ( ℩ 𝑓  ∈  ( 𝑤  RingHom  ( 𝑠  ↑s  ( 𝑏  ↑m  𝑖 ) ) ) ( ( 𝑓  ∘  ( algSc ‘ 𝑤 ) )  =  ( 𝑥  ∈  𝑟  ↦  ( ( 𝑏  ↑m  𝑖 )  ×  { 𝑥 } ) )  ∧  ( 𝑓  ∘  ( 𝑖  mVar  ( 𝑠  ↾s  𝑟 ) ) )  =  ( 𝑥  ∈  𝑖  ↦  ( 𝑔  ∈  ( 𝑏  ↑m  𝑖 )  ↦  ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) ) | 
						
							| 29 | 23 26 28 | csbief | ⊢ ⦋ ( Base ‘ 𝑠 )  /  𝑏 ⦌ ( 𝑟  ∈  ( SubRing ‘ 𝑠 )  ↦  ⦋ ( 𝑖  mPoly  ( 𝑠  ↾s  𝑟 ) )  /  𝑤 ⦌ ( ℩ 𝑓  ∈  ( 𝑤  RingHom  ( 𝑠  ↑s  ( 𝑏  ↑m  𝑖 ) ) ) ( ( 𝑓  ∘  ( algSc ‘ 𝑤 ) )  =  ( 𝑥  ∈  𝑟  ↦  ( ( 𝑏  ↑m  𝑖 )  ×  { 𝑥 } ) )  ∧  ( 𝑓  ∘  ( 𝑖  mVar  ( 𝑠  ↾s  𝑟 ) ) )  =  ( 𝑥  ∈  𝑖  ↦  ( 𝑔  ∈  ( 𝑏  ↑m  𝑖 )  ↦  ( 𝑔 ‘ 𝑥 ) ) ) ) ) )  =  ( 𝑟  ∈  ( SubRing ‘ 𝑠 )  ↦  ⦋ ( Base ‘ 𝑠 )  /  𝑏 ⦌ ⦋ ( 𝑖  mPoly  ( 𝑠  ↾s  𝑟 ) )  /  𝑤 ⦌ ( ℩ 𝑓  ∈  ( 𝑤  RingHom  ( 𝑠  ↑s  ( 𝑏  ↑m  𝑖 ) ) ) ( ( 𝑓  ∘  ( algSc ‘ 𝑤 ) )  =  ( 𝑥  ∈  𝑟  ↦  ( ( 𝑏  ↑m  𝑖 )  ×  { 𝑥 } ) )  ∧  ( 𝑓  ∘  ( 𝑖  mVar  ( 𝑠  ↾s  𝑟 ) ) )  =  ( 𝑥  ∈  𝑖  ↦  ( 𝑔  ∈  ( 𝑏  ↑m  𝑖 )  ↦  ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) | 
						
							| 30 |  | fveq2 | ⊢ ( 𝑠  =  𝑆  →  ( SubRing ‘ 𝑠 )  =  ( SubRing ‘ 𝑆 ) ) | 
						
							| 31 | 30 | adantl | ⊢ ( ( 𝑖  =  𝐼  ∧  𝑠  =  𝑆 )  →  ( SubRing ‘ 𝑠 )  =  ( SubRing ‘ 𝑆 ) ) | 
						
							| 32 |  | fveq2 | ⊢ ( 𝑠  =  𝑆  →  ( Base ‘ 𝑠 )  =  ( Base ‘ 𝑆 ) ) | 
						
							| 33 | 32 | adantl | ⊢ ( ( 𝑖  =  𝐼  ∧  𝑠  =  𝑆 )  →  ( Base ‘ 𝑠 )  =  ( Base ‘ 𝑆 ) ) | 
						
							| 34 | 33 | csbeq1d | ⊢ ( ( 𝑖  =  𝐼  ∧  𝑠  =  𝑆 )  →  ⦋ ( Base ‘ 𝑠 )  /  𝑏 ⦌ ⦋ ( 𝑖  mPoly  ( 𝑠  ↾s  𝑟 ) )  /  𝑤 ⦌ ( ℩ 𝑓  ∈  ( 𝑤  RingHom  ( 𝑠  ↑s  ( 𝑏  ↑m  𝑖 ) ) ) ( ( 𝑓  ∘  ( algSc ‘ 𝑤 ) )  =  ( 𝑥  ∈  𝑟  ↦  ( ( 𝑏  ↑m  𝑖 )  ×  { 𝑥 } ) )  ∧  ( 𝑓  ∘  ( 𝑖  mVar  ( 𝑠  ↾s  𝑟 ) ) )  =  ( 𝑥  ∈  𝑖  ↦  ( 𝑔  ∈  ( 𝑏  ↑m  𝑖 )  ↦  ( 𝑔 ‘ 𝑥 ) ) ) ) )  =  ⦋ ( Base ‘ 𝑆 )  /  𝑏 ⦌ ⦋ ( 𝑖  mPoly  ( 𝑠  ↾s  𝑟 ) )  /  𝑤 ⦌ ( ℩ 𝑓  ∈  ( 𝑤  RingHom  ( 𝑠  ↑s  ( 𝑏  ↑m  𝑖 ) ) ) ( ( 𝑓  ∘  ( algSc ‘ 𝑤 ) )  =  ( 𝑥  ∈  𝑟  ↦  ( ( 𝑏  ↑m  𝑖 )  ×  { 𝑥 } ) )  ∧  ( 𝑓  ∘  ( 𝑖  mVar  ( 𝑠  ↾s  𝑟 ) ) )  =  ( 𝑥  ∈  𝑖  ↦  ( 𝑔  ∈  ( 𝑏  ↑m  𝑖 )  ↦  ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) | 
						
							| 35 |  | id | ⊢ ( 𝑖  =  𝐼  →  𝑖  =  𝐼 ) | 
						
							| 36 |  | oveq1 | ⊢ ( 𝑠  =  𝑆  →  ( 𝑠  ↾s  𝑟 )  =  ( 𝑆  ↾s  𝑟 ) ) | 
						
							| 37 | 35 36 | oveqan12d | ⊢ ( ( 𝑖  =  𝐼  ∧  𝑠  =  𝑆 )  →  ( 𝑖  mPoly  ( 𝑠  ↾s  𝑟 ) )  =  ( 𝐼  mPoly  ( 𝑆  ↾s  𝑟 ) ) ) | 
						
							| 38 | 37 | csbeq1d | ⊢ ( ( 𝑖  =  𝐼  ∧  𝑠  =  𝑆 )  →  ⦋ ( 𝑖  mPoly  ( 𝑠  ↾s  𝑟 ) )  /  𝑤 ⦌ ( ℩ 𝑓  ∈  ( 𝑤  RingHom  ( 𝑠  ↑s  ( 𝑏  ↑m  𝑖 ) ) ) ( ( 𝑓  ∘  ( algSc ‘ 𝑤 ) )  =  ( 𝑥  ∈  𝑟  ↦  ( ( 𝑏  ↑m  𝑖 )  ×  { 𝑥 } ) )  ∧  ( 𝑓  ∘  ( 𝑖  mVar  ( 𝑠  ↾s  𝑟 ) ) )  =  ( 𝑥  ∈  𝑖  ↦  ( 𝑔  ∈  ( 𝑏  ↑m  𝑖 )  ↦  ( 𝑔 ‘ 𝑥 ) ) ) ) )  =  ⦋ ( 𝐼  mPoly  ( 𝑆  ↾s  𝑟 ) )  /  𝑤 ⦌ ( ℩ 𝑓  ∈  ( 𝑤  RingHom  ( 𝑠  ↑s  ( 𝑏  ↑m  𝑖 ) ) ) ( ( 𝑓  ∘  ( algSc ‘ 𝑤 ) )  =  ( 𝑥  ∈  𝑟  ↦  ( ( 𝑏  ↑m  𝑖 )  ×  { 𝑥 } ) )  ∧  ( 𝑓  ∘  ( 𝑖  mVar  ( 𝑠  ↾s  𝑟 ) ) )  =  ( 𝑥  ∈  𝑖  ↦  ( 𝑔  ∈  ( 𝑏  ↑m  𝑖 )  ↦  ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) | 
						
							| 39 |  | id | ⊢ ( 𝑠  =  𝑆  →  𝑠  =  𝑆 ) | 
						
							| 40 |  | oveq2 | ⊢ ( 𝑖  =  𝐼  →  ( 𝑏  ↑m  𝑖 )  =  ( 𝑏  ↑m  𝐼 ) ) | 
						
							| 41 | 39 40 | oveqan12rd | ⊢ ( ( 𝑖  =  𝐼  ∧  𝑠  =  𝑆 )  →  ( 𝑠  ↑s  ( 𝑏  ↑m  𝑖 ) )  =  ( 𝑆  ↑s  ( 𝑏  ↑m  𝐼 ) ) ) | 
						
							| 42 | 41 | oveq2d | ⊢ ( ( 𝑖  =  𝐼  ∧  𝑠  =  𝑆 )  →  ( 𝑤  RingHom  ( 𝑠  ↑s  ( 𝑏  ↑m  𝑖 ) ) )  =  ( 𝑤  RingHom  ( 𝑆  ↑s  ( 𝑏  ↑m  𝐼 ) ) ) ) | 
						
							| 43 | 40 | adantr | ⊢ ( ( 𝑖  =  𝐼  ∧  𝑠  =  𝑆 )  →  ( 𝑏  ↑m  𝑖 )  =  ( 𝑏  ↑m  𝐼 ) ) | 
						
							| 44 | 43 | xpeq1d | ⊢ ( ( 𝑖  =  𝐼  ∧  𝑠  =  𝑆 )  →  ( ( 𝑏  ↑m  𝑖 )  ×  { 𝑥 } )  =  ( ( 𝑏  ↑m  𝐼 )  ×  { 𝑥 } ) ) | 
						
							| 45 | 44 | mpteq2dv | ⊢ ( ( 𝑖  =  𝐼  ∧  𝑠  =  𝑆 )  →  ( 𝑥  ∈  𝑟  ↦  ( ( 𝑏  ↑m  𝑖 )  ×  { 𝑥 } ) )  =  ( 𝑥  ∈  𝑟  ↦  ( ( 𝑏  ↑m  𝐼 )  ×  { 𝑥 } ) ) ) | 
						
							| 46 | 45 | eqeq2d | ⊢ ( ( 𝑖  =  𝐼  ∧  𝑠  =  𝑆 )  →  ( ( 𝑓  ∘  ( algSc ‘ 𝑤 ) )  =  ( 𝑥  ∈  𝑟  ↦  ( ( 𝑏  ↑m  𝑖 )  ×  { 𝑥 } ) )  ↔  ( 𝑓  ∘  ( algSc ‘ 𝑤 ) )  =  ( 𝑥  ∈  𝑟  ↦  ( ( 𝑏  ↑m  𝐼 )  ×  { 𝑥 } ) ) ) ) | 
						
							| 47 | 35 36 | oveqan12d | ⊢ ( ( 𝑖  =  𝐼  ∧  𝑠  =  𝑆 )  →  ( 𝑖  mVar  ( 𝑠  ↾s  𝑟 ) )  =  ( 𝐼  mVar  ( 𝑆  ↾s  𝑟 ) ) ) | 
						
							| 48 | 47 | coeq2d | ⊢ ( ( 𝑖  =  𝐼  ∧  𝑠  =  𝑆 )  →  ( 𝑓  ∘  ( 𝑖  mVar  ( 𝑠  ↾s  𝑟 ) ) )  =  ( 𝑓  ∘  ( 𝐼  mVar  ( 𝑆  ↾s  𝑟 ) ) ) ) | 
						
							| 49 |  | simpl | ⊢ ( ( 𝑖  =  𝐼  ∧  𝑠  =  𝑆 )  →  𝑖  =  𝐼 ) | 
						
							| 50 | 43 | mpteq1d | ⊢ ( ( 𝑖  =  𝐼  ∧  𝑠  =  𝑆 )  →  ( 𝑔  ∈  ( 𝑏  ↑m  𝑖 )  ↦  ( 𝑔 ‘ 𝑥 ) )  =  ( 𝑔  ∈  ( 𝑏  ↑m  𝐼 )  ↦  ( 𝑔 ‘ 𝑥 ) ) ) | 
						
							| 51 | 49 50 | mpteq12dv | ⊢ ( ( 𝑖  =  𝐼  ∧  𝑠  =  𝑆 )  →  ( 𝑥  ∈  𝑖  ↦  ( 𝑔  ∈  ( 𝑏  ↑m  𝑖 )  ↦  ( 𝑔 ‘ 𝑥 ) ) )  =  ( 𝑥  ∈  𝐼  ↦  ( 𝑔  ∈  ( 𝑏  ↑m  𝐼 )  ↦  ( 𝑔 ‘ 𝑥 ) ) ) ) | 
						
							| 52 | 48 51 | eqeq12d | ⊢ ( ( 𝑖  =  𝐼  ∧  𝑠  =  𝑆 )  →  ( ( 𝑓  ∘  ( 𝑖  mVar  ( 𝑠  ↾s  𝑟 ) ) )  =  ( 𝑥  ∈  𝑖  ↦  ( 𝑔  ∈  ( 𝑏  ↑m  𝑖 )  ↦  ( 𝑔 ‘ 𝑥 ) ) )  ↔  ( 𝑓  ∘  ( 𝐼  mVar  ( 𝑆  ↾s  𝑟 ) ) )  =  ( 𝑥  ∈  𝐼  ↦  ( 𝑔  ∈  ( 𝑏  ↑m  𝐼 )  ↦  ( 𝑔 ‘ 𝑥 ) ) ) ) ) | 
						
							| 53 | 46 52 | anbi12d | ⊢ ( ( 𝑖  =  𝐼  ∧  𝑠  =  𝑆 )  →  ( ( ( 𝑓  ∘  ( algSc ‘ 𝑤 ) )  =  ( 𝑥  ∈  𝑟  ↦  ( ( 𝑏  ↑m  𝑖 )  ×  { 𝑥 } ) )  ∧  ( 𝑓  ∘  ( 𝑖  mVar  ( 𝑠  ↾s  𝑟 ) ) )  =  ( 𝑥  ∈  𝑖  ↦  ( 𝑔  ∈  ( 𝑏  ↑m  𝑖 )  ↦  ( 𝑔 ‘ 𝑥 ) ) ) )  ↔  ( ( 𝑓  ∘  ( algSc ‘ 𝑤 ) )  =  ( 𝑥  ∈  𝑟  ↦  ( ( 𝑏  ↑m  𝐼 )  ×  { 𝑥 } ) )  ∧  ( 𝑓  ∘  ( 𝐼  mVar  ( 𝑆  ↾s  𝑟 ) ) )  =  ( 𝑥  ∈  𝐼  ↦  ( 𝑔  ∈  ( 𝑏  ↑m  𝐼 )  ↦  ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) | 
						
							| 54 | 42 53 | riotaeqbidv | ⊢ ( ( 𝑖  =  𝐼  ∧  𝑠  =  𝑆 )  →  ( ℩ 𝑓  ∈  ( 𝑤  RingHom  ( 𝑠  ↑s  ( 𝑏  ↑m  𝑖 ) ) ) ( ( 𝑓  ∘  ( algSc ‘ 𝑤 ) )  =  ( 𝑥  ∈  𝑟  ↦  ( ( 𝑏  ↑m  𝑖 )  ×  { 𝑥 } ) )  ∧  ( 𝑓  ∘  ( 𝑖  mVar  ( 𝑠  ↾s  𝑟 ) ) )  =  ( 𝑥  ∈  𝑖  ↦  ( 𝑔  ∈  ( 𝑏  ↑m  𝑖 )  ↦  ( 𝑔 ‘ 𝑥 ) ) ) ) )  =  ( ℩ 𝑓  ∈  ( 𝑤  RingHom  ( 𝑆  ↑s  ( 𝑏  ↑m  𝐼 ) ) ) ( ( 𝑓  ∘  ( algSc ‘ 𝑤 ) )  =  ( 𝑥  ∈  𝑟  ↦  ( ( 𝑏  ↑m  𝐼 )  ×  { 𝑥 } ) )  ∧  ( 𝑓  ∘  ( 𝐼  mVar  ( 𝑆  ↾s  𝑟 ) ) )  =  ( 𝑥  ∈  𝐼  ↦  ( 𝑔  ∈  ( 𝑏  ↑m  𝐼 )  ↦  ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) | 
						
							| 55 | 54 | csbeq2dv | ⊢ ( ( 𝑖  =  𝐼  ∧  𝑠  =  𝑆 )  →  ⦋ ( 𝐼  mPoly  ( 𝑆  ↾s  𝑟 ) )  /  𝑤 ⦌ ( ℩ 𝑓  ∈  ( 𝑤  RingHom  ( 𝑠  ↑s  ( 𝑏  ↑m  𝑖 ) ) ) ( ( 𝑓  ∘  ( algSc ‘ 𝑤 ) )  =  ( 𝑥  ∈  𝑟  ↦  ( ( 𝑏  ↑m  𝑖 )  ×  { 𝑥 } ) )  ∧  ( 𝑓  ∘  ( 𝑖  mVar  ( 𝑠  ↾s  𝑟 ) ) )  =  ( 𝑥  ∈  𝑖  ↦  ( 𝑔  ∈  ( 𝑏  ↑m  𝑖 )  ↦  ( 𝑔 ‘ 𝑥 ) ) ) ) )  =  ⦋ ( 𝐼  mPoly  ( 𝑆  ↾s  𝑟 ) )  /  𝑤 ⦌ ( ℩ 𝑓  ∈  ( 𝑤  RingHom  ( 𝑆  ↑s  ( 𝑏  ↑m  𝐼 ) ) ) ( ( 𝑓  ∘  ( algSc ‘ 𝑤 ) )  =  ( 𝑥  ∈  𝑟  ↦  ( ( 𝑏  ↑m  𝐼 )  ×  { 𝑥 } ) )  ∧  ( 𝑓  ∘  ( 𝐼  mVar  ( 𝑆  ↾s  𝑟 ) ) )  =  ( 𝑥  ∈  𝐼  ↦  ( 𝑔  ∈  ( 𝑏  ↑m  𝐼 )  ↦  ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) | 
						
							| 56 | 38 55 | eqtrd | ⊢ ( ( 𝑖  =  𝐼  ∧  𝑠  =  𝑆 )  →  ⦋ ( 𝑖  mPoly  ( 𝑠  ↾s  𝑟 ) )  /  𝑤 ⦌ ( ℩ 𝑓  ∈  ( 𝑤  RingHom  ( 𝑠  ↑s  ( 𝑏  ↑m  𝑖 ) ) ) ( ( 𝑓  ∘  ( algSc ‘ 𝑤 ) )  =  ( 𝑥  ∈  𝑟  ↦  ( ( 𝑏  ↑m  𝑖 )  ×  { 𝑥 } ) )  ∧  ( 𝑓  ∘  ( 𝑖  mVar  ( 𝑠  ↾s  𝑟 ) ) )  =  ( 𝑥  ∈  𝑖  ↦  ( 𝑔  ∈  ( 𝑏  ↑m  𝑖 )  ↦  ( 𝑔 ‘ 𝑥 ) ) ) ) )  =  ⦋ ( 𝐼  mPoly  ( 𝑆  ↾s  𝑟 ) )  /  𝑤 ⦌ ( ℩ 𝑓  ∈  ( 𝑤  RingHom  ( 𝑆  ↑s  ( 𝑏  ↑m  𝐼 ) ) ) ( ( 𝑓  ∘  ( algSc ‘ 𝑤 ) )  =  ( 𝑥  ∈  𝑟  ↦  ( ( 𝑏  ↑m  𝐼 )  ×  { 𝑥 } ) )  ∧  ( 𝑓  ∘  ( 𝐼  mVar  ( 𝑆  ↾s  𝑟 ) ) )  =  ( 𝑥  ∈  𝐼  ↦  ( 𝑔  ∈  ( 𝑏  ↑m  𝐼 )  ↦  ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) | 
						
							| 57 | 56 | csbeq2dv | ⊢ ( ( 𝑖  =  𝐼  ∧  𝑠  =  𝑆 )  →  ⦋ ( Base ‘ 𝑆 )  /  𝑏 ⦌ ⦋ ( 𝑖  mPoly  ( 𝑠  ↾s  𝑟 ) )  /  𝑤 ⦌ ( ℩ 𝑓  ∈  ( 𝑤  RingHom  ( 𝑠  ↑s  ( 𝑏  ↑m  𝑖 ) ) ) ( ( 𝑓  ∘  ( algSc ‘ 𝑤 ) )  =  ( 𝑥  ∈  𝑟  ↦  ( ( 𝑏  ↑m  𝑖 )  ×  { 𝑥 } ) )  ∧  ( 𝑓  ∘  ( 𝑖  mVar  ( 𝑠  ↾s  𝑟 ) ) )  =  ( 𝑥  ∈  𝑖  ↦  ( 𝑔  ∈  ( 𝑏  ↑m  𝑖 )  ↦  ( 𝑔 ‘ 𝑥 ) ) ) ) )  =  ⦋ ( Base ‘ 𝑆 )  /  𝑏 ⦌ ⦋ ( 𝐼  mPoly  ( 𝑆  ↾s  𝑟 ) )  /  𝑤 ⦌ ( ℩ 𝑓  ∈  ( 𝑤  RingHom  ( 𝑆  ↑s  ( 𝑏  ↑m  𝐼 ) ) ) ( ( 𝑓  ∘  ( algSc ‘ 𝑤 ) )  =  ( 𝑥  ∈  𝑟  ↦  ( ( 𝑏  ↑m  𝐼 )  ×  { 𝑥 } ) )  ∧  ( 𝑓  ∘  ( 𝐼  mVar  ( 𝑆  ↾s  𝑟 ) ) )  =  ( 𝑥  ∈  𝐼  ↦  ( 𝑔  ∈  ( 𝑏  ↑m  𝐼 )  ↦  ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) | 
						
							| 58 | 34 57 | eqtrd | ⊢ ( ( 𝑖  =  𝐼  ∧  𝑠  =  𝑆 )  →  ⦋ ( Base ‘ 𝑠 )  /  𝑏 ⦌ ⦋ ( 𝑖  mPoly  ( 𝑠  ↾s  𝑟 ) )  /  𝑤 ⦌ ( ℩ 𝑓  ∈  ( 𝑤  RingHom  ( 𝑠  ↑s  ( 𝑏  ↑m  𝑖 ) ) ) ( ( 𝑓  ∘  ( algSc ‘ 𝑤 ) )  =  ( 𝑥  ∈  𝑟  ↦  ( ( 𝑏  ↑m  𝑖 )  ×  { 𝑥 } ) )  ∧  ( 𝑓  ∘  ( 𝑖  mVar  ( 𝑠  ↾s  𝑟 ) ) )  =  ( 𝑥  ∈  𝑖  ↦  ( 𝑔  ∈  ( 𝑏  ↑m  𝑖 )  ↦  ( 𝑔 ‘ 𝑥 ) ) ) ) )  =  ⦋ ( Base ‘ 𝑆 )  /  𝑏 ⦌ ⦋ ( 𝐼  mPoly  ( 𝑆  ↾s  𝑟 ) )  /  𝑤 ⦌ ( ℩ 𝑓  ∈  ( 𝑤  RingHom  ( 𝑆  ↑s  ( 𝑏  ↑m  𝐼 ) ) ) ( ( 𝑓  ∘  ( algSc ‘ 𝑤 ) )  =  ( 𝑥  ∈  𝑟  ↦  ( ( 𝑏  ↑m  𝐼 )  ×  { 𝑥 } ) )  ∧  ( 𝑓  ∘  ( 𝐼  mVar  ( 𝑆  ↾s  𝑟 ) ) )  =  ( 𝑥  ∈  𝐼  ↦  ( 𝑔  ∈  ( 𝑏  ↑m  𝐼 )  ↦  ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) | 
						
							| 59 | 31 58 | mpteq12dv | ⊢ ( ( 𝑖  =  𝐼  ∧  𝑠  =  𝑆 )  →  ( 𝑟  ∈  ( SubRing ‘ 𝑠 )  ↦  ⦋ ( Base ‘ 𝑠 )  /  𝑏 ⦌ ⦋ ( 𝑖  mPoly  ( 𝑠  ↾s  𝑟 ) )  /  𝑤 ⦌ ( ℩ 𝑓  ∈  ( 𝑤  RingHom  ( 𝑠  ↑s  ( 𝑏  ↑m  𝑖 ) ) ) ( ( 𝑓  ∘  ( algSc ‘ 𝑤 ) )  =  ( 𝑥  ∈  𝑟  ↦  ( ( 𝑏  ↑m  𝑖 )  ×  { 𝑥 } ) )  ∧  ( 𝑓  ∘  ( 𝑖  mVar  ( 𝑠  ↾s  𝑟 ) ) )  =  ( 𝑥  ∈  𝑖  ↦  ( 𝑔  ∈  ( 𝑏  ↑m  𝑖 )  ↦  ( 𝑔 ‘ 𝑥 ) ) ) ) ) )  =  ( 𝑟  ∈  ( SubRing ‘ 𝑆 )  ↦  ⦋ ( Base ‘ 𝑆 )  /  𝑏 ⦌ ⦋ ( 𝐼  mPoly  ( 𝑆  ↾s  𝑟 ) )  /  𝑤 ⦌ ( ℩ 𝑓  ∈  ( 𝑤  RingHom  ( 𝑆  ↑s  ( 𝑏  ↑m  𝐼 ) ) ) ( ( 𝑓  ∘  ( algSc ‘ 𝑤 ) )  =  ( 𝑥  ∈  𝑟  ↦  ( ( 𝑏  ↑m  𝐼 )  ×  { 𝑥 } ) )  ∧  ( 𝑓  ∘  ( 𝐼  mVar  ( 𝑆  ↾s  𝑟 ) ) )  =  ( 𝑥  ∈  𝐼  ↦  ( 𝑔  ∈  ( 𝑏  ↑m  𝐼 )  ↦  ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) ) | 
						
							| 60 | 29 59 | eqtrid | ⊢ ( ( 𝑖  =  𝐼  ∧  𝑠  =  𝑆 )  →  ⦋ ( Base ‘ 𝑠 )  /  𝑏 ⦌ ( 𝑟  ∈  ( SubRing ‘ 𝑠 )  ↦  ⦋ ( 𝑖  mPoly  ( 𝑠  ↾s  𝑟 ) )  /  𝑤 ⦌ ( ℩ 𝑓  ∈  ( 𝑤  RingHom  ( 𝑠  ↑s  ( 𝑏  ↑m  𝑖 ) ) ) ( ( 𝑓  ∘  ( algSc ‘ 𝑤 ) )  =  ( 𝑥  ∈  𝑟  ↦  ( ( 𝑏  ↑m  𝑖 )  ×  { 𝑥 } ) )  ∧  ( 𝑓  ∘  ( 𝑖  mVar  ( 𝑠  ↾s  𝑟 ) ) )  =  ( 𝑥  ∈  𝑖  ↦  ( 𝑔  ∈  ( 𝑏  ↑m  𝑖 )  ↦  ( 𝑔 ‘ 𝑥 ) ) ) ) ) )  =  ( 𝑟  ∈  ( SubRing ‘ 𝑆 )  ↦  ⦋ ( Base ‘ 𝑆 )  /  𝑏 ⦌ ⦋ ( 𝐼  mPoly  ( 𝑆  ↾s  𝑟 ) )  /  𝑤 ⦌ ( ℩ 𝑓  ∈  ( 𝑤  RingHom  ( 𝑆  ↑s  ( 𝑏  ↑m  𝐼 ) ) ) ( ( 𝑓  ∘  ( algSc ‘ 𝑤 ) )  =  ( 𝑥  ∈  𝑟  ↦  ( ( 𝑏  ↑m  𝐼 )  ×  { 𝑥 } ) )  ∧  ( 𝑓  ∘  ( 𝐼  mVar  ( 𝑆  ↾s  𝑟 ) ) )  =  ( 𝑥  ∈  𝐼  ↦  ( 𝑔  ∈  ( 𝑏  ↑m  𝐼 )  ↦  ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) ) | 
						
							| 61 |  | fvex | ⊢ ( SubRing ‘ 𝑆 )  ∈  V | 
						
							| 62 | 61 | mptex | ⊢ ( 𝑟  ∈  ( SubRing ‘ 𝑆 )  ↦  ⦋ ( Base ‘ 𝑆 )  /  𝑏 ⦌ ⦋ ( 𝐼  mPoly  ( 𝑆  ↾s  𝑟 ) )  /  𝑤 ⦌ ( ℩ 𝑓  ∈  ( 𝑤  RingHom  ( 𝑆  ↑s  ( 𝑏  ↑m  𝐼 ) ) ) ( ( 𝑓  ∘  ( algSc ‘ 𝑤 ) )  =  ( 𝑥  ∈  𝑟  ↦  ( ( 𝑏  ↑m  𝐼 )  ×  { 𝑥 } ) )  ∧  ( 𝑓  ∘  ( 𝐼  mVar  ( 𝑆  ↾s  𝑟 ) ) )  =  ( 𝑥  ∈  𝐼  ↦  ( 𝑔  ∈  ( 𝑏  ↑m  𝐼 )  ↦  ( 𝑔 ‘ 𝑥 ) ) ) ) ) )  ∈  V | 
						
							| 63 | 60 16 62 | ovmpoa | ⊢ ( ( 𝐼  ∈  V  ∧  𝑆  ∈  CRing )  →  ( 𝐼  evalSub  𝑆 )  =  ( 𝑟  ∈  ( SubRing ‘ 𝑆 )  ↦  ⦋ ( Base ‘ 𝑆 )  /  𝑏 ⦌ ⦋ ( 𝐼  mPoly  ( 𝑆  ↾s  𝑟 ) )  /  𝑤 ⦌ ( ℩ 𝑓  ∈  ( 𝑤  RingHom  ( 𝑆  ↑s  ( 𝑏  ↑m  𝐼 ) ) ) ( ( 𝑓  ∘  ( algSc ‘ 𝑤 ) )  =  ( 𝑥  ∈  𝑟  ↦  ( ( 𝑏  ↑m  𝐼 )  ×  { 𝑥 } ) )  ∧  ( 𝑓  ∘  ( 𝐼  mVar  ( 𝑆  ↾s  𝑟 ) ) )  =  ( 𝑥  ∈  𝐼  ↦  ( 𝑔  ∈  ( 𝑏  ↑m  𝐼 )  ↦  ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) ) | 
						
							| 64 | 63 | dmeqd | ⊢ ( ( 𝐼  ∈  V  ∧  𝑆  ∈  CRing )  →  dom  ( 𝐼  evalSub  𝑆 )  =  dom  ( 𝑟  ∈  ( SubRing ‘ 𝑆 )  ↦  ⦋ ( Base ‘ 𝑆 )  /  𝑏 ⦌ ⦋ ( 𝐼  mPoly  ( 𝑆  ↾s  𝑟 ) )  /  𝑤 ⦌ ( ℩ 𝑓  ∈  ( 𝑤  RingHom  ( 𝑆  ↑s  ( 𝑏  ↑m  𝐼 ) ) ) ( ( 𝑓  ∘  ( algSc ‘ 𝑤 ) )  =  ( 𝑥  ∈  𝑟  ↦  ( ( 𝑏  ↑m  𝐼 )  ×  { 𝑥 } ) )  ∧  ( 𝑓  ∘  ( 𝐼  mVar  ( 𝑆  ↾s  𝑟 ) ) )  =  ( 𝑥  ∈  𝐼  ↦  ( 𝑔  ∈  ( 𝑏  ↑m  𝐼 )  ↦  ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) ) | 
						
							| 65 |  | eqid | ⊢ ( 𝑟  ∈  ( SubRing ‘ 𝑆 )  ↦  ⦋ ( Base ‘ 𝑆 )  /  𝑏 ⦌ ⦋ ( 𝐼  mPoly  ( 𝑆  ↾s  𝑟 ) )  /  𝑤 ⦌ ( ℩ 𝑓  ∈  ( 𝑤  RingHom  ( 𝑆  ↑s  ( 𝑏  ↑m  𝐼 ) ) ) ( ( 𝑓  ∘  ( algSc ‘ 𝑤 ) )  =  ( 𝑥  ∈  𝑟  ↦  ( ( 𝑏  ↑m  𝐼 )  ×  { 𝑥 } ) )  ∧  ( 𝑓  ∘  ( 𝐼  mVar  ( 𝑆  ↾s  𝑟 ) ) )  =  ( 𝑥  ∈  𝐼  ↦  ( 𝑔  ∈  ( 𝑏  ↑m  𝐼 )  ↦  ( 𝑔 ‘ 𝑥 ) ) ) ) ) )  =  ( 𝑟  ∈  ( SubRing ‘ 𝑆 )  ↦  ⦋ ( Base ‘ 𝑆 )  /  𝑏 ⦌ ⦋ ( 𝐼  mPoly  ( 𝑆  ↾s  𝑟 ) )  /  𝑤 ⦌ ( ℩ 𝑓  ∈  ( 𝑤  RingHom  ( 𝑆  ↑s  ( 𝑏  ↑m  𝐼 ) ) ) ( ( 𝑓  ∘  ( algSc ‘ 𝑤 ) )  =  ( 𝑥  ∈  𝑟  ↦  ( ( 𝑏  ↑m  𝐼 )  ×  { 𝑥 } ) )  ∧  ( 𝑓  ∘  ( 𝐼  mVar  ( 𝑆  ↾s  𝑟 ) ) )  =  ( 𝑥  ∈  𝐼  ↦  ( 𝑔  ∈  ( 𝑏  ↑m  𝐼 )  ↦  ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) | 
						
							| 66 | 65 | dmmptss | ⊢ dom  ( 𝑟  ∈  ( SubRing ‘ 𝑆 )  ↦  ⦋ ( Base ‘ 𝑆 )  /  𝑏 ⦌ ⦋ ( 𝐼  mPoly  ( 𝑆  ↾s  𝑟 ) )  /  𝑤 ⦌ ( ℩ 𝑓  ∈  ( 𝑤  RingHom  ( 𝑆  ↑s  ( 𝑏  ↑m  𝐼 ) ) ) ( ( 𝑓  ∘  ( algSc ‘ 𝑤 ) )  =  ( 𝑥  ∈  𝑟  ↦  ( ( 𝑏  ↑m  𝐼 )  ×  { 𝑥 } ) )  ∧  ( 𝑓  ∘  ( 𝐼  mVar  ( 𝑆  ↾s  𝑟 ) ) )  =  ( 𝑥  ∈  𝐼  ↦  ( 𝑔  ∈  ( 𝑏  ↑m  𝐼 )  ↦  ( 𝑔 ‘ 𝑥 ) ) ) ) ) )  ⊆  ( SubRing ‘ 𝑆 ) | 
						
							| 67 | 64 66 | eqsstrdi | ⊢ ( ( 𝐼  ∈  V  ∧  𝑆  ∈  CRing )  →  dom  ( 𝐼  evalSub  𝑆 )  ⊆  ( SubRing ‘ 𝑆 ) ) | 
						
							| 68 | 67 | ssneld | ⊢ ( ( 𝐼  ∈  V  ∧  𝑆  ∈  CRing )  →  ( ¬  𝑅  ∈  ( SubRing ‘ 𝑆 )  →  ¬  𝑅  ∈  dom  ( 𝐼  evalSub  𝑆 ) ) ) | 
						
							| 69 |  | ndmfv | ⊢ ( ¬  𝑅  ∈  dom  ( 𝐼  evalSub  𝑆 )  →  ( ( 𝐼  evalSub  𝑆 ) ‘ 𝑅 )  =  ∅ ) | 
						
							| 70 | 68 69 | syl6 | ⊢ ( ( 𝐼  ∈  V  ∧  𝑆  ∈  CRing )  →  ( ¬  𝑅  ∈  ( SubRing ‘ 𝑆 )  →  ( ( 𝐼  evalSub  𝑆 ) ‘ 𝑅 )  =  ∅ ) ) | 
						
							| 71 | 70 | necon1ad | ⊢ ( ( 𝐼  ∈  V  ∧  𝑆  ∈  CRing )  →  ( ( ( 𝐼  evalSub  𝑆 ) ‘ 𝑅 )  ≠  ∅  →  𝑅  ∈  ( SubRing ‘ 𝑆 ) ) ) | 
						
							| 72 | 71 | com12 | ⊢ ( ( ( 𝐼  evalSub  𝑆 ) ‘ 𝑅 )  ≠  ∅  →  ( ( 𝐼  ∈  V  ∧  𝑆  ∈  CRing )  →  𝑅  ∈  ( SubRing ‘ 𝑆 ) ) ) | 
						
							| 73 | 22 72 | jcai | ⊢ ( ( ( 𝐼  evalSub  𝑆 ) ‘ 𝑅 )  ≠  ∅  →  ( ( 𝐼  ∈  V  ∧  𝑆  ∈  CRing )  ∧  𝑅  ∈  ( SubRing ‘ 𝑆 ) ) ) | 
						
							| 74 |  | df-3an | ⊢ ( ( 𝐼  ∈  V  ∧  𝑆  ∈  CRing  ∧  𝑅  ∈  ( SubRing ‘ 𝑆 ) )  ↔  ( ( 𝐼  ∈  V  ∧  𝑆  ∈  CRing )  ∧  𝑅  ∈  ( SubRing ‘ 𝑆 ) ) ) | 
						
							| 75 | 73 74 | sylibr | ⊢ ( ( ( 𝐼  evalSub  𝑆 ) ‘ 𝑅 )  ≠  ∅  →  ( 𝐼  ∈  V  ∧  𝑆  ∈  CRing  ∧  𝑅  ∈  ( SubRing ‘ 𝑆 ) ) ) | 
						
							| 76 | 3 7 75 | 3syl | ⊢ ( 𝑋  ∈  𝑄  →  ( 𝐼  ∈  V  ∧  𝑆  ∈  CRing  ∧  𝑅  ∈  ( SubRing ‘ 𝑆 ) ) ) |