Metamath Proof Explorer
Description: A deduction which "stacks" a hypothesis. (Contributed by Stanislas
Polu, 9-Mar-2020) (Proof shortened by Wolf Lammen, 28-Mar-2021)
|
|
Ref |
Expression |
|
Hypotheses |
mpidan.1 |
⊢ ( 𝜑 → 𝜒 ) |
|
|
mpidan.2 |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) → 𝜃 ) |
|
Assertion |
mpidan |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜃 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
mpidan.1 |
⊢ ( 𝜑 → 𝜒 ) |
2 |
|
mpidan.2 |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) → 𝜃 ) |
3 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜒 ) |
4 |
3 2
|
mpdan |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜃 ) |