Metamath Proof Explorer


Theorem mpidan

Description: A deduction which "stacks" a hypothesis. (Contributed by Stanislas Polu, 9-Mar-2020) (Proof shortened by Wolf Lammen, 28-Mar-2021)

Ref Expression
Hypotheses mpidan.1 ( 𝜑𝜒 )
mpidan.2 ( ( ( 𝜑𝜓 ) ∧ 𝜒 ) → 𝜃 )
Assertion mpidan ( ( 𝜑𝜓 ) → 𝜃 )

Proof

Step Hyp Ref Expression
1 mpidan.1 ( 𝜑𝜒 )
2 mpidan.2 ( ( ( 𝜑𝜓 ) ∧ 𝜒 ) → 𝜃 )
3 1 adantr ( ( 𝜑𝜓 ) → 𝜒 )
4 3 2 mpdan ( ( 𝜑𝜓 ) → 𝜃 )