Metamath Proof Explorer


Theorem mpjao3dan

Description: Eliminate a three-way disjunction in a deduction. (Contributed by Thierry Arnoux, 13-Apr-2018) (Proof shortened by Wolf Lammen, 20-Apr-2024)

Ref Expression
Hypotheses mpjao3dan.1 ( ( 𝜑𝜓 ) → 𝜒 )
mpjao3dan.2 ( ( 𝜑𝜃 ) → 𝜒 )
mpjao3dan.3 ( ( 𝜑𝜏 ) → 𝜒 )
mpjao3dan.4 ( 𝜑 → ( 𝜓𝜃𝜏 ) )
Assertion mpjao3dan ( 𝜑𝜒 )

Proof

Step Hyp Ref Expression
1 mpjao3dan.1 ( ( 𝜑𝜓 ) → 𝜒 )
2 mpjao3dan.2 ( ( 𝜑𝜃 ) → 𝜒 )
3 mpjao3dan.3 ( ( 𝜑𝜏 ) → 𝜒 )
4 mpjao3dan.4 ( 𝜑 → ( 𝜓𝜃𝜏 ) )
5 1 2 3 3jaodan ( ( 𝜑 ∧ ( 𝜓𝜃𝜏 ) ) → 𝜒 )
6 4 5 mpdan ( 𝜑𝜒 )