Metamath Proof Explorer


Theorem mpjao3danOLD

Description: Obsolete version of mpjao3dan as of 17-Apr-2024. (Contributed by Thierry Arnoux, 13-Apr-2018) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypotheses mpjao3dan.1 ( ( 𝜑𝜓 ) → 𝜒 )
mpjao3dan.2 ( ( 𝜑𝜃 ) → 𝜒 )
mpjao3dan.3 ( ( 𝜑𝜏 ) → 𝜒 )
mpjao3dan.4 ( 𝜑 → ( 𝜓𝜃𝜏 ) )
Assertion mpjao3danOLD ( 𝜑𝜒 )

Proof

Step Hyp Ref Expression
1 mpjao3dan.1 ( ( 𝜑𝜓 ) → 𝜒 )
2 mpjao3dan.2 ( ( 𝜑𝜃 ) → 𝜒 )
3 mpjao3dan.3 ( ( 𝜑𝜏 ) → 𝜒 )
4 mpjao3dan.4 ( 𝜑 → ( 𝜓𝜃𝜏 ) )
5 1 2 jaodan ( ( 𝜑 ∧ ( 𝜓𝜃 ) ) → 𝜒 )
6 df-3or ( ( 𝜓𝜃𝜏 ) ↔ ( ( 𝜓𝜃 ) ∨ 𝜏 ) )
7 4 6 sylib ( 𝜑 → ( ( 𝜓𝜃 ) ∨ 𝜏 ) )
8 5 3 7 mpjaodan ( 𝜑𝜒 )