Database
CLASSICAL FIRST-ORDER LOGIC WITH EQUALITY
Propositional calculus
Abbreviated conjunction and disjunction of three wff's
mpjao3danOLD
Metamath Proof Explorer
Description: Obsolete version of mpjao3dan as of 17-Apr-2024. (Contributed by Thierry Arnoux , 13-Apr-2018) (New usage is discouraged.)
(Proof modification is discouraged.)
Ref
Expression
Hypotheses
mpjao3dan.1
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜒 )
mpjao3dan.2
⊢ ( ( 𝜑 ∧ 𝜃 ) → 𝜒 )
mpjao3dan.3
⊢ ( ( 𝜑 ∧ 𝜏 ) → 𝜒 )
mpjao3dan.4
⊢ ( 𝜑 → ( 𝜓 ∨ 𝜃 ∨ 𝜏 ) )
Assertion
mpjao3danOLD
⊢ ( 𝜑 → 𝜒 )
Proof
Step
Hyp
Ref
Expression
1
mpjao3dan.1
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜒 )
2
mpjao3dan.2
⊢ ( ( 𝜑 ∧ 𝜃 ) → 𝜒 )
3
mpjao3dan.3
⊢ ( ( 𝜑 ∧ 𝜏 ) → 𝜒 )
4
mpjao3dan.4
⊢ ( 𝜑 → ( 𝜓 ∨ 𝜃 ∨ 𝜏 ) )
5
1 2
jaodan
⊢ ( ( 𝜑 ∧ ( 𝜓 ∨ 𝜃 ) ) → 𝜒 )
6
df-3or
⊢ ( ( 𝜓 ∨ 𝜃 ∨ 𝜏 ) ↔ ( ( 𝜓 ∨ 𝜃 ) ∨ 𝜏 ) )
7
4 6
sylib
⊢ ( 𝜑 → ( ( 𝜓 ∨ 𝜃 ) ∨ 𝜏 ) )
8
5 3 7
mpjaodan
⊢ ( 𝜑 → 𝜒 )