Metamath Proof Explorer


Theorem mpjaod

Description: Eliminate a disjunction in a deduction. (Contributed by Mario Carneiro, 29-May-2016)

Ref Expression
Hypotheses jaod.1 ( 𝜑 → ( 𝜓𝜒 ) )
jaod.2 ( 𝜑 → ( 𝜃𝜒 ) )
jaod.3 ( 𝜑 → ( 𝜓𝜃 ) )
Assertion mpjaod ( 𝜑𝜒 )

Proof

Step Hyp Ref Expression
1 jaod.1 ( 𝜑 → ( 𝜓𝜒 ) )
2 jaod.2 ( 𝜑 → ( 𝜃𝜒 ) )
3 jaod.3 ( 𝜑 → ( 𝜓𝜃 ) )
4 1 2 jaod ( 𝜑 → ( ( 𝜓𝜃 ) → 𝜒 ) )
5 3 4 mpd ( 𝜑𝜒 )