Metamath Proof Explorer
Description: Eliminate a disjunction in a deduction. (Contributed by Mario Carneiro, 29-May-2016)
|
|
Ref |
Expression |
|
Hypotheses |
jaod.1 |
⊢ ( 𝜑 → ( 𝜓 → 𝜒 ) ) |
|
|
jaod.2 |
⊢ ( 𝜑 → ( 𝜃 → 𝜒 ) ) |
|
|
jaod.3 |
⊢ ( 𝜑 → ( 𝜓 ∨ 𝜃 ) ) |
|
Assertion |
mpjaod |
⊢ ( 𝜑 → 𝜒 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
jaod.1 |
⊢ ( 𝜑 → ( 𝜓 → 𝜒 ) ) |
2 |
|
jaod.2 |
⊢ ( 𝜑 → ( 𝜃 → 𝜒 ) ) |
3 |
|
jaod.3 |
⊢ ( 𝜑 → ( 𝜓 ∨ 𝜃 ) ) |
4 |
1 2
|
jaod |
⊢ ( 𝜑 → ( ( 𝜓 ∨ 𝜃 ) → 𝜒 ) ) |
5 |
3 4
|
mpd |
⊢ ( 𝜑 → 𝜒 ) |