Step |
Hyp |
Ref |
Expression |
1 |
|
mpl0.p |
⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) |
2 |
|
mpl0.d |
⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } |
3 |
|
mpl0.o |
⊢ 𝑂 = ( 0g ‘ 𝑅 ) |
4 |
|
mpl0.z |
⊢ 0 = ( 0g ‘ 𝑃 ) |
5 |
|
mpl0.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) |
6 |
|
mpl0.r |
⊢ ( 𝜑 → 𝑅 ∈ Grp ) |
7 |
|
eqid |
⊢ ( 𝐼 mPwSer 𝑅 ) = ( 𝐼 mPwSer 𝑅 ) |
8 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
9 |
7 1 8 5 6
|
mplsubg |
⊢ ( 𝜑 → ( Base ‘ 𝑃 ) ∈ ( SubGrp ‘ ( 𝐼 mPwSer 𝑅 ) ) ) |
10 |
1 7 8
|
mplval2 |
⊢ 𝑃 = ( ( 𝐼 mPwSer 𝑅 ) ↾s ( Base ‘ 𝑃 ) ) |
11 |
|
eqid |
⊢ ( 0g ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( 0g ‘ ( 𝐼 mPwSer 𝑅 ) ) |
12 |
10 11
|
subg0 |
⊢ ( ( Base ‘ 𝑃 ) ∈ ( SubGrp ‘ ( 𝐼 mPwSer 𝑅 ) ) → ( 0g ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( 0g ‘ 𝑃 ) ) |
13 |
9 12
|
syl |
⊢ ( 𝜑 → ( 0g ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( 0g ‘ 𝑃 ) ) |
14 |
7 5 6 2 3 11
|
psr0 |
⊢ ( 𝜑 → ( 0g ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( 𝐷 × { 𝑂 } ) ) |
15 |
13 14
|
eqtr3d |
⊢ ( 𝜑 → ( 0g ‘ 𝑃 ) = ( 𝐷 × { 𝑂 } ) ) |
16 |
4 15
|
eqtrid |
⊢ ( 𝜑 → 0 = ( 𝐷 × { 𝑂 } ) ) |