Metamath Proof Explorer


Theorem mpl0

Description: The zero polynomial. (Contributed by Mario Carneiro, 9-Jan-2015)

Ref Expression
Hypotheses mpl0.p 𝑃 = ( 𝐼 mPoly 𝑅 )
mpl0.d 𝐷 = { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin }
mpl0.o 𝑂 = ( 0g𝑅 )
mpl0.z 0 = ( 0g𝑃 )
mpl0.i ( 𝜑𝐼𝑊 )
mpl0.r ( 𝜑𝑅 ∈ Grp )
Assertion mpl0 ( 𝜑0 = ( 𝐷 × { 𝑂 } ) )

Proof

Step Hyp Ref Expression
1 mpl0.p 𝑃 = ( 𝐼 mPoly 𝑅 )
2 mpl0.d 𝐷 = { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin }
3 mpl0.o 𝑂 = ( 0g𝑅 )
4 mpl0.z 0 = ( 0g𝑃 )
5 mpl0.i ( 𝜑𝐼𝑊 )
6 mpl0.r ( 𝜑𝑅 ∈ Grp )
7 eqid ( 𝐼 mPwSer 𝑅 ) = ( 𝐼 mPwSer 𝑅 )
8 eqid ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 )
9 7 1 8 5 6 mplsubg ( 𝜑 → ( Base ‘ 𝑃 ) ∈ ( SubGrp ‘ ( 𝐼 mPwSer 𝑅 ) ) )
10 1 7 8 mplval2 𝑃 = ( ( 𝐼 mPwSer 𝑅 ) ↾s ( Base ‘ 𝑃 ) )
11 eqid ( 0g ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( 0g ‘ ( 𝐼 mPwSer 𝑅 ) )
12 10 11 subg0 ( ( Base ‘ 𝑃 ) ∈ ( SubGrp ‘ ( 𝐼 mPwSer 𝑅 ) ) → ( 0g ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( 0g𝑃 ) )
13 9 12 syl ( 𝜑 → ( 0g ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( 0g𝑃 ) )
14 7 5 6 2 3 11 psr0 ( 𝜑 → ( 0g ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( 𝐷 × { 𝑂 } ) )
15 13 14 eqtr3d ( 𝜑 → ( 0g𝑃 ) = ( 𝐷 × { 𝑂 } ) )
16 4 15 eqtrid ( 𝜑0 = ( 𝐷 × { 𝑂 } ) )