Metamath Proof Explorer


Theorem mpl1

Description: The identity element of the ring of polynomials. (Contributed by Mario Carneiro, 10-Jan-2015)

Ref Expression
Hypotheses mpl1.p 𝑃 = ( 𝐼 mPoly 𝑅 )
mpl1.d 𝐷 = { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin }
mpl1.z 0 = ( 0g𝑅 )
mpl1.o 1 = ( 1r𝑅 )
mpl1.u 𝑈 = ( 1r𝑃 )
mpl1.i ( 𝜑𝐼𝑊 )
mpl1.r ( 𝜑𝑅 ∈ Ring )
Assertion mpl1 ( 𝜑𝑈 = ( 𝑥𝐷 ↦ if ( 𝑥 = ( 𝐼 × { 0 } ) , 1 , 0 ) ) )

Proof

Step Hyp Ref Expression
1 mpl1.p 𝑃 = ( 𝐼 mPoly 𝑅 )
2 mpl1.d 𝐷 = { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin }
3 mpl1.z 0 = ( 0g𝑅 )
4 mpl1.o 1 = ( 1r𝑅 )
5 mpl1.u 𝑈 = ( 1r𝑃 )
6 mpl1.i ( 𝜑𝐼𝑊 )
7 mpl1.r ( 𝜑𝑅 ∈ Ring )
8 eqid ( 𝐼 mPwSer 𝑅 ) = ( 𝐼 mPwSer 𝑅 )
9 eqid ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 )
10 8 1 9 6 7 mplsubrg ( 𝜑 → ( Base ‘ 𝑃 ) ∈ ( SubRing ‘ ( 𝐼 mPwSer 𝑅 ) ) )
11 1 8 9 mplval2 𝑃 = ( ( 𝐼 mPwSer 𝑅 ) ↾s ( Base ‘ 𝑃 ) )
12 eqid ( 1r ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( 1r ‘ ( 𝐼 mPwSer 𝑅 ) )
13 11 12 subrg1 ( ( Base ‘ 𝑃 ) ∈ ( SubRing ‘ ( 𝐼 mPwSer 𝑅 ) ) → ( 1r ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( 1r𝑃 ) )
14 10 13 syl ( 𝜑 → ( 1r ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( 1r𝑃 ) )
15 8 6 7 2 3 4 12 psr1 ( 𝜑 → ( 1r ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( 𝑥𝐷 ↦ if ( 𝑥 = ( 𝐼 × { 0 } ) , 1 , 0 ) ) )
16 14 15 eqtr3d ( 𝜑 → ( 1r𝑃 ) = ( 𝑥𝐷 ↦ if ( 𝑥 = ( 𝐼 × { 0 } ) , 1 , 0 ) ) )
17 5 16 eqtrid ( 𝜑𝑈 = ( 𝑥𝐷 ↦ if ( 𝑥 = ( 𝐼 × { 0 } ) , 1 , 0 ) ) )