Step |
Hyp |
Ref |
Expression |
1 |
|
mpl1.p |
⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) |
2 |
|
mpl1.d |
⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } |
3 |
|
mpl1.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
4 |
|
mpl1.o |
⊢ 1 = ( 1r ‘ 𝑅 ) |
5 |
|
mpl1.u |
⊢ 𝑈 = ( 1r ‘ 𝑃 ) |
6 |
|
mpl1.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) |
7 |
|
mpl1.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
8 |
|
eqid |
⊢ ( 𝐼 mPwSer 𝑅 ) = ( 𝐼 mPwSer 𝑅 ) |
9 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
10 |
8 1 9 6 7
|
mplsubrg |
⊢ ( 𝜑 → ( Base ‘ 𝑃 ) ∈ ( SubRing ‘ ( 𝐼 mPwSer 𝑅 ) ) ) |
11 |
1 8 9
|
mplval2 |
⊢ 𝑃 = ( ( 𝐼 mPwSer 𝑅 ) ↾s ( Base ‘ 𝑃 ) ) |
12 |
|
eqid |
⊢ ( 1r ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( 1r ‘ ( 𝐼 mPwSer 𝑅 ) ) |
13 |
11 12
|
subrg1 |
⊢ ( ( Base ‘ 𝑃 ) ∈ ( SubRing ‘ ( 𝐼 mPwSer 𝑅 ) ) → ( 1r ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( 1r ‘ 𝑃 ) ) |
14 |
10 13
|
syl |
⊢ ( 𝜑 → ( 1r ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( 1r ‘ 𝑃 ) ) |
15 |
8 6 7 2 3 4 12
|
psr1 |
⊢ ( 𝜑 → ( 1r ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( 𝑥 ∈ 𝐷 ↦ if ( 𝑥 = ( 𝐼 × { 0 } ) , 1 , 0 ) ) ) |
16 |
14 15
|
eqtr3d |
⊢ ( 𝜑 → ( 1r ‘ 𝑃 ) = ( 𝑥 ∈ 𝐷 ↦ if ( 𝑥 = ( 𝐼 × { 0 } ) , 1 , 0 ) ) ) |
17 |
5 16
|
eqtrid |
⊢ ( 𝜑 → 𝑈 = ( 𝑥 ∈ 𝐷 ↦ if ( 𝑥 = ( 𝐼 × { 0 } ) , 1 , 0 ) ) ) |