| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mpladd.p | ⊢ 𝑃  =  ( 𝐼  mPoly  𝑅 ) | 
						
							| 2 |  | mpladd.b | ⊢ 𝐵  =  ( Base ‘ 𝑃 ) | 
						
							| 3 |  | mpladd.a | ⊢  +   =  ( +g ‘ 𝑅 ) | 
						
							| 4 |  | mpladd.g | ⊢  ✚   =  ( +g ‘ 𝑃 ) | 
						
							| 5 |  | mpladd.x | ⊢ ( 𝜑  →  𝑋  ∈  𝐵 ) | 
						
							| 6 |  | mpladd.y | ⊢ ( 𝜑  →  𝑌  ∈  𝐵 ) | 
						
							| 7 |  | eqid | ⊢ ( 𝐼  mPwSer  𝑅 )  =  ( 𝐼  mPwSer  𝑅 ) | 
						
							| 8 |  | eqid | ⊢ ( Base ‘ ( 𝐼  mPwSer  𝑅 ) )  =  ( Base ‘ ( 𝐼  mPwSer  𝑅 ) ) | 
						
							| 9 | 1 7 4 | mplplusg | ⊢  ✚   =  ( +g ‘ ( 𝐼  mPwSer  𝑅 ) ) | 
						
							| 10 | 1 7 2 8 | mplbasss | ⊢ 𝐵  ⊆  ( Base ‘ ( 𝐼  mPwSer  𝑅 ) ) | 
						
							| 11 | 10 5 | sselid | ⊢ ( 𝜑  →  𝑋  ∈  ( Base ‘ ( 𝐼  mPwSer  𝑅 ) ) ) | 
						
							| 12 | 10 6 | sselid | ⊢ ( 𝜑  →  𝑌  ∈  ( Base ‘ ( 𝐼  mPwSer  𝑅 ) ) ) | 
						
							| 13 | 7 8 3 9 11 12 | psradd | ⊢ ( 𝜑  →  ( 𝑋  ✚  𝑌 )  =  ( 𝑋  ∘f   +  𝑌 ) ) |