Metamath Proof Explorer


Theorem mplascl1

Description: The one scalar as a polynomial. (Contributed by SN, 12-Mar-2025)

Ref Expression
Hypotheses mplascl1.w 𝑊 = ( 𝐼 mPoly 𝑅 )
mplascl1.a 𝐴 = ( algSc ‘ 𝑊 )
mplascl1.o 𝑂 = ( 1r𝑅 )
mplascl1.1 1 = ( 1r𝑊 )
mplascl1.i ( 𝜑𝐼𝑉 )
mplascl1.r ( 𝜑𝑅 ∈ Ring )
Assertion mplascl1 ( 𝜑 → ( 𝐴𝑂 ) = 1 )

Proof

Step Hyp Ref Expression
1 mplascl1.w 𝑊 = ( 𝐼 mPoly 𝑅 )
2 mplascl1.a 𝐴 = ( algSc ‘ 𝑊 )
3 mplascl1.o 𝑂 = ( 1r𝑅 )
4 mplascl1.1 1 = ( 1r𝑊 )
5 mplascl1.i ( 𝜑𝐼𝑉 )
6 mplascl1.r ( 𝜑𝑅 ∈ Ring )
7 1 5 6 mplsca ( 𝜑𝑅 = ( Scalar ‘ 𝑊 ) )
8 7 fveq2d ( 𝜑 → ( 1r𝑅 ) = ( 1r ‘ ( Scalar ‘ 𝑊 ) ) )
9 3 8 eqtrid ( 𝜑𝑂 = ( 1r ‘ ( Scalar ‘ 𝑊 ) ) )
10 9 fveq2d ( 𝜑 → ( 𝐴𝑂 ) = ( 𝐴 ‘ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) )
11 eqid ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 )
12 1 5 6 mpllmodd ( 𝜑𝑊 ∈ LMod )
13 1 5 6 mplringd ( 𝜑𝑊 ∈ Ring )
14 2 11 12 13 ascl1 ( 𝜑 → ( 𝐴 ‘ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) = ( 1r𝑊 ) )
15 10 14 eqtrd ( 𝜑 → ( 𝐴𝑂 ) = ( 1r𝑊 ) )
16 15 4 eqtr4di ( 𝜑 → ( 𝐴𝑂 ) = 1 )