Step |
Hyp |
Ref |
Expression |
1 |
|
mplgrp.p |
⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) |
2 |
|
eqid |
⊢ ( 𝐼 mPwSer 𝑅 ) = ( 𝐼 mPwSer 𝑅 ) |
3 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
4 |
|
simpl |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ CRing ) → 𝐼 ∈ 𝑉 ) |
5 |
|
crngring |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) |
6 |
5
|
adantl |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ CRing ) → 𝑅 ∈ Ring ) |
7 |
2 1 3 4 6
|
mplsubrg |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ CRing ) → ( Base ‘ 𝑃 ) ∈ ( SubRing ‘ ( 𝐼 mPwSer 𝑅 ) ) ) |
8 |
2 1 3 4 6
|
mpllss |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ CRing ) → ( Base ‘ 𝑃 ) ∈ ( LSubSp ‘ ( 𝐼 mPwSer 𝑅 ) ) ) |
9 |
|
simpr |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ CRing ) → 𝑅 ∈ CRing ) |
10 |
2 4 9
|
psrassa |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ CRing ) → ( 𝐼 mPwSer 𝑅 ) ∈ AssAlg ) |
11 |
|
eqid |
⊢ ( 1r ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( 1r ‘ ( 𝐼 mPwSer 𝑅 ) ) |
12 |
11
|
subrg1cl |
⊢ ( ( Base ‘ 𝑃 ) ∈ ( SubRing ‘ ( 𝐼 mPwSer 𝑅 ) ) → ( 1r ‘ ( 𝐼 mPwSer 𝑅 ) ) ∈ ( Base ‘ 𝑃 ) ) |
13 |
7 12
|
syl |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ CRing ) → ( 1r ‘ ( 𝐼 mPwSer 𝑅 ) ) ∈ ( Base ‘ 𝑃 ) ) |
14 |
|
eqid |
⊢ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) |
15 |
14
|
subrgss |
⊢ ( ( Base ‘ 𝑃 ) ∈ ( SubRing ‘ ( 𝐼 mPwSer 𝑅 ) ) → ( Base ‘ 𝑃 ) ⊆ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ) |
16 |
7 15
|
syl |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ CRing ) → ( Base ‘ 𝑃 ) ⊆ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ) |
17 |
1 2 3
|
mplval2 |
⊢ 𝑃 = ( ( 𝐼 mPwSer 𝑅 ) ↾s ( Base ‘ 𝑃 ) ) |
18 |
|
eqid |
⊢ ( LSubSp ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( LSubSp ‘ ( 𝐼 mPwSer 𝑅 ) ) |
19 |
17 18 14 11
|
issubassa |
⊢ ( ( ( 𝐼 mPwSer 𝑅 ) ∈ AssAlg ∧ ( 1r ‘ ( 𝐼 mPwSer 𝑅 ) ) ∈ ( Base ‘ 𝑃 ) ∧ ( Base ‘ 𝑃 ) ⊆ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ) → ( 𝑃 ∈ AssAlg ↔ ( ( Base ‘ 𝑃 ) ∈ ( SubRing ‘ ( 𝐼 mPwSer 𝑅 ) ) ∧ ( Base ‘ 𝑃 ) ∈ ( LSubSp ‘ ( 𝐼 mPwSer 𝑅 ) ) ) ) ) |
20 |
10 13 16 19
|
syl3anc |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ CRing ) → ( 𝑃 ∈ AssAlg ↔ ( ( Base ‘ 𝑃 ) ∈ ( SubRing ‘ ( 𝐼 mPwSer 𝑅 ) ) ∧ ( Base ‘ 𝑃 ) ∈ ( LSubSp ‘ ( 𝐼 mPwSer 𝑅 ) ) ) ) ) |
21 |
7 8 20
|
mpbir2and |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ CRing ) → 𝑃 ∈ AssAlg ) |