| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mplgrp.p | ⊢ 𝑃  =  ( 𝐼  mPoly  𝑅 ) | 
						
							| 2 |  | eqid | ⊢ ( 𝐼  mPwSer  𝑅 )  =  ( 𝐼  mPwSer  𝑅 ) | 
						
							| 3 |  | eqid | ⊢ ( Base ‘ 𝑃 )  =  ( Base ‘ 𝑃 ) | 
						
							| 4 |  | simpl | ⊢ ( ( 𝐼  ∈  𝑉  ∧  𝑅  ∈  CRing )  →  𝐼  ∈  𝑉 ) | 
						
							| 5 |  | crngring | ⊢ ( 𝑅  ∈  CRing  →  𝑅  ∈  Ring ) | 
						
							| 6 | 5 | adantl | ⊢ ( ( 𝐼  ∈  𝑉  ∧  𝑅  ∈  CRing )  →  𝑅  ∈  Ring ) | 
						
							| 7 | 2 1 3 4 6 | mplsubrg | ⊢ ( ( 𝐼  ∈  𝑉  ∧  𝑅  ∈  CRing )  →  ( Base ‘ 𝑃 )  ∈  ( SubRing ‘ ( 𝐼  mPwSer  𝑅 ) ) ) | 
						
							| 8 | 2 1 3 4 6 | mpllss | ⊢ ( ( 𝐼  ∈  𝑉  ∧  𝑅  ∈  CRing )  →  ( Base ‘ 𝑃 )  ∈  ( LSubSp ‘ ( 𝐼  mPwSer  𝑅 ) ) ) | 
						
							| 9 |  | simpr | ⊢ ( ( 𝐼  ∈  𝑉  ∧  𝑅  ∈  CRing )  →  𝑅  ∈  CRing ) | 
						
							| 10 | 2 4 9 | psrassa | ⊢ ( ( 𝐼  ∈  𝑉  ∧  𝑅  ∈  CRing )  →  ( 𝐼  mPwSer  𝑅 )  ∈  AssAlg ) | 
						
							| 11 |  | eqid | ⊢ ( 1r ‘ ( 𝐼  mPwSer  𝑅 ) )  =  ( 1r ‘ ( 𝐼  mPwSer  𝑅 ) ) | 
						
							| 12 | 11 | subrg1cl | ⊢ ( ( Base ‘ 𝑃 )  ∈  ( SubRing ‘ ( 𝐼  mPwSer  𝑅 ) )  →  ( 1r ‘ ( 𝐼  mPwSer  𝑅 ) )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 13 | 7 12 | syl | ⊢ ( ( 𝐼  ∈  𝑉  ∧  𝑅  ∈  CRing )  →  ( 1r ‘ ( 𝐼  mPwSer  𝑅 ) )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 14 |  | eqid | ⊢ ( Base ‘ ( 𝐼  mPwSer  𝑅 ) )  =  ( Base ‘ ( 𝐼  mPwSer  𝑅 ) ) | 
						
							| 15 | 14 | subrgss | ⊢ ( ( Base ‘ 𝑃 )  ∈  ( SubRing ‘ ( 𝐼  mPwSer  𝑅 ) )  →  ( Base ‘ 𝑃 )  ⊆  ( Base ‘ ( 𝐼  mPwSer  𝑅 ) ) ) | 
						
							| 16 | 7 15 | syl | ⊢ ( ( 𝐼  ∈  𝑉  ∧  𝑅  ∈  CRing )  →  ( Base ‘ 𝑃 )  ⊆  ( Base ‘ ( 𝐼  mPwSer  𝑅 ) ) ) | 
						
							| 17 | 1 2 3 | mplval2 | ⊢ 𝑃  =  ( ( 𝐼  mPwSer  𝑅 )  ↾s  ( Base ‘ 𝑃 ) ) | 
						
							| 18 |  | eqid | ⊢ ( LSubSp ‘ ( 𝐼  mPwSer  𝑅 ) )  =  ( LSubSp ‘ ( 𝐼  mPwSer  𝑅 ) ) | 
						
							| 19 | 17 18 14 11 | issubassa | ⊢ ( ( ( 𝐼  mPwSer  𝑅 )  ∈  AssAlg  ∧  ( 1r ‘ ( 𝐼  mPwSer  𝑅 ) )  ∈  ( Base ‘ 𝑃 )  ∧  ( Base ‘ 𝑃 )  ⊆  ( Base ‘ ( 𝐼  mPwSer  𝑅 ) ) )  →  ( 𝑃  ∈  AssAlg  ↔  ( ( Base ‘ 𝑃 )  ∈  ( SubRing ‘ ( 𝐼  mPwSer  𝑅 ) )  ∧  ( Base ‘ 𝑃 )  ∈  ( LSubSp ‘ ( 𝐼  mPwSer  𝑅 ) ) ) ) ) | 
						
							| 20 | 10 13 16 19 | syl3anc | ⊢ ( ( 𝐼  ∈  𝑉  ∧  𝑅  ∈  CRing )  →  ( 𝑃  ∈  AssAlg  ↔  ( ( Base ‘ 𝑃 )  ∈  ( SubRing ‘ ( 𝐼  mPwSer  𝑅 ) )  ∧  ( Base ‘ 𝑃 )  ∈  ( LSubSp ‘ ( 𝐼  mPwSer  𝑅 ) ) ) ) ) | 
						
							| 21 | 7 8 20 | mpbir2and | ⊢ ( ( 𝐼  ∈  𝑉  ∧  𝑅  ∈  CRing )  →  𝑃  ∈  AssAlg ) |