| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mplval.p |
⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) |
| 2 |
|
mplval.s |
⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) |
| 3 |
|
mplval.b |
⊢ 𝐵 = ( Base ‘ 𝑆 ) |
| 4 |
|
mplval.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 5 |
|
mplbas.u |
⊢ 𝑈 = ( Base ‘ 𝑃 ) |
| 6 |
|
ssrab2 |
⊢ { 𝑓 ∈ 𝐵 ∣ 𝑓 finSupp 0 } ⊆ 𝐵 |
| 7 |
|
eqid |
⊢ { 𝑓 ∈ 𝐵 ∣ 𝑓 finSupp 0 } = { 𝑓 ∈ 𝐵 ∣ 𝑓 finSupp 0 } |
| 8 |
1 2 3 4 7
|
mplval |
⊢ 𝑃 = ( 𝑆 ↾s { 𝑓 ∈ 𝐵 ∣ 𝑓 finSupp 0 } ) |
| 9 |
8 3
|
ressbas2 |
⊢ ( { 𝑓 ∈ 𝐵 ∣ 𝑓 finSupp 0 } ⊆ 𝐵 → { 𝑓 ∈ 𝐵 ∣ 𝑓 finSupp 0 } = ( Base ‘ 𝑃 ) ) |
| 10 |
6 9
|
ax-mp |
⊢ { 𝑓 ∈ 𝐵 ∣ 𝑓 finSupp 0 } = ( Base ‘ 𝑃 ) |
| 11 |
5 10
|
eqtr4i |
⊢ 𝑈 = { 𝑓 ∈ 𝐵 ∣ 𝑓 finSupp 0 } |