| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mplbas2.p | ⊢ 𝑃  =  ( 𝐼  mPoly  𝑅 ) | 
						
							| 2 |  | mplbas2.s | ⊢ 𝑆  =  ( 𝐼  mPwSer  𝑅 ) | 
						
							| 3 |  | mplbas2.v | ⊢ 𝑉  =  ( 𝐼  mVar  𝑅 ) | 
						
							| 4 |  | mplbas2.a | ⊢ 𝐴  =  ( AlgSpan ‘ 𝑆 ) | 
						
							| 5 |  | mplbas2.i | ⊢ ( 𝜑  →  𝐼  ∈  𝑊 ) | 
						
							| 6 |  | mplbas2.r | ⊢ ( 𝜑  →  𝑅  ∈  CRing ) | 
						
							| 7 | 2 5 6 | psrassa | ⊢ ( 𝜑  →  𝑆  ∈  AssAlg ) | 
						
							| 8 |  | eqid | ⊢ ( Base ‘ 𝑃 )  =  ( Base ‘ 𝑃 ) | 
						
							| 9 |  | eqid | ⊢ ( Base ‘ 𝑆 )  =  ( Base ‘ 𝑆 ) | 
						
							| 10 | 1 2 8 9 | mplbasss | ⊢ ( Base ‘ 𝑃 )  ⊆  ( Base ‘ 𝑆 ) | 
						
							| 11 | 10 | a1i | ⊢ ( 𝜑  →  ( Base ‘ 𝑃 )  ⊆  ( Base ‘ 𝑆 ) ) | 
						
							| 12 |  | crngring | ⊢ ( 𝑅  ∈  CRing  →  𝑅  ∈  Ring ) | 
						
							| 13 | 6 12 | syl | ⊢ ( 𝜑  →  𝑅  ∈  Ring ) | 
						
							| 14 | 2 3 9 5 13 | mvrf | ⊢ ( 𝜑  →  𝑉 : 𝐼 ⟶ ( Base ‘ 𝑆 ) ) | 
						
							| 15 | 14 | ffnd | ⊢ ( 𝜑  →  𝑉  Fn  𝐼 ) | 
						
							| 16 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  𝐼  ∈  𝑊 ) | 
						
							| 17 | 13 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  𝑅  ∈  Ring ) | 
						
							| 18 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  𝑥  ∈  𝐼 ) | 
						
							| 19 | 1 3 8 16 17 18 | mvrcl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  ( 𝑉 ‘ 𝑥 )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 20 | 19 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝐼 ( 𝑉 ‘ 𝑥 )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 21 |  | ffnfv | ⊢ ( 𝑉 : 𝐼 ⟶ ( Base ‘ 𝑃 )  ↔  ( 𝑉  Fn  𝐼  ∧  ∀ 𝑥  ∈  𝐼 ( 𝑉 ‘ 𝑥 )  ∈  ( Base ‘ 𝑃 ) ) ) | 
						
							| 22 | 15 20 21 | sylanbrc | ⊢ ( 𝜑  →  𝑉 : 𝐼 ⟶ ( Base ‘ 𝑃 ) ) | 
						
							| 23 | 22 | frnd | ⊢ ( 𝜑  →  ran  𝑉  ⊆  ( Base ‘ 𝑃 ) ) | 
						
							| 24 | 4 9 | aspss | ⊢ ( ( 𝑆  ∈  AssAlg  ∧  ( Base ‘ 𝑃 )  ⊆  ( Base ‘ 𝑆 )  ∧  ran  𝑉  ⊆  ( Base ‘ 𝑃 ) )  →  ( 𝐴 ‘ ran  𝑉 )  ⊆  ( 𝐴 ‘ ( Base ‘ 𝑃 ) ) ) | 
						
							| 25 | 7 11 23 24 | syl3anc | ⊢ ( 𝜑  →  ( 𝐴 ‘ ran  𝑉 )  ⊆  ( 𝐴 ‘ ( Base ‘ 𝑃 ) ) ) | 
						
							| 26 | 2 1 8 5 13 | mplsubrg | ⊢ ( 𝜑  →  ( Base ‘ 𝑃 )  ∈  ( SubRing ‘ 𝑆 ) ) | 
						
							| 27 | 2 1 8 5 13 | mpllss | ⊢ ( 𝜑  →  ( Base ‘ 𝑃 )  ∈  ( LSubSp ‘ 𝑆 ) ) | 
						
							| 28 |  | eqid | ⊢ ( LSubSp ‘ 𝑆 )  =  ( LSubSp ‘ 𝑆 ) | 
						
							| 29 | 4 9 28 | aspid | ⊢ ( ( 𝑆  ∈  AssAlg  ∧  ( Base ‘ 𝑃 )  ∈  ( SubRing ‘ 𝑆 )  ∧  ( Base ‘ 𝑃 )  ∈  ( LSubSp ‘ 𝑆 ) )  →  ( 𝐴 ‘ ( Base ‘ 𝑃 ) )  =  ( Base ‘ 𝑃 ) ) | 
						
							| 30 | 7 26 27 29 | syl3anc | ⊢ ( 𝜑  →  ( 𝐴 ‘ ( Base ‘ 𝑃 ) )  =  ( Base ‘ 𝑃 ) ) | 
						
							| 31 | 25 30 | sseqtrd | ⊢ ( 𝜑  →  ( 𝐴 ‘ ran  𝑉 )  ⊆  ( Base ‘ 𝑃 ) ) | 
						
							| 32 |  | eqid | ⊢ { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  =  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } | 
						
							| 33 |  | eqid | ⊢ ( 0g ‘ 𝑅 )  =  ( 0g ‘ 𝑅 ) | 
						
							| 34 |  | eqid | ⊢ ( 1r ‘ 𝑅 )  =  ( 1r ‘ 𝑅 ) | 
						
							| 35 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑃 ) )  →  𝐼  ∈  𝑊 ) | 
						
							| 36 |  | eqid | ⊢ (  ·𝑠  ‘ 𝑃 )  =  (  ·𝑠  ‘ 𝑃 ) | 
						
							| 37 | 13 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑃 ) )  →  𝑅  ∈  Ring ) | 
						
							| 38 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑃 ) )  →  𝑥  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 39 | 1 32 33 34 35 8 36 37 38 | mplcoe1 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑃 ) )  →  𝑥  =  ( 𝑃  Σg  ( 𝑘  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ↦  ( ( 𝑥 ‘ 𝑘 ) (  ·𝑠  ‘ 𝑃 ) ( 𝑦  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ↦  if ( 𝑦  =  𝑘 ,  ( 1r ‘ 𝑅 ) ,  ( 0g ‘ 𝑅 ) ) ) ) ) ) ) | 
						
							| 40 |  | eqid | ⊢ ( 0g ‘ 𝑃 )  =  ( 0g ‘ 𝑃 ) | 
						
							| 41 | 1 5 13 | mplringd | ⊢ ( 𝜑  →  𝑃  ∈  Ring ) | 
						
							| 42 |  | ringabl | ⊢ ( 𝑃  ∈  Ring  →  𝑃  ∈  Abel ) | 
						
							| 43 | 41 42 | syl | ⊢ ( 𝜑  →  𝑃  ∈  Abel ) | 
						
							| 44 | 43 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑃 ) )  →  𝑃  ∈  Abel ) | 
						
							| 45 |  | ovex | ⊢ ( ℕ0  ↑m  𝐼 )  ∈  V | 
						
							| 46 | 45 | rabex | ⊢ { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ∈  V | 
						
							| 47 | 46 | a1i | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑃 ) )  →  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ∈  V ) | 
						
							| 48 | 14 | frnd | ⊢ ( 𝜑  →  ran  𝑉  ⊆  ( Base ‘ 𝑆 ) ) | 
						
							| 49 | 4 9 | aspsubrg | ⊢ ( ( 𝑆  ∈  AssAlg  ∧  ran  𝑉  ⊆  ( Base ‘ 𝑆 ) )  →  ( 𝐴 ‘ ran  𝑉 )  ∈  ( SubRing ‘ 𝑆 ) ) | 
						
							| 50 | 7 48 49 | syl2anc | ⊢ ( 𝜑  →  ( 𝐴 ‘ ran  𝑉 )  ∈  ( SubRing ‘ 𝑆 ) ) | 
						
							| 51 | 1 2 8 | mplval2 | ⊢ 𝑃  =  ( 𝑆  ↾s  ( Base ‘ 𝑃 ) ) | 
						
							| 52 | 51 | subsubrg | ⊢ ( ( Base ‘ 𝑃 )  ∈  ( SubRing ‘ 𝑆 )  →  ( ( 𝐴 ‘ ran  𝑉 )  ∈  ( SubRing ‘ 𝑃 )  ↔  ( ( 𝐴 ‘ ran  𝑉 )  ∈  ( SubRing ‘ 𝑆 )  ∧  ( 𝐴 ‘ ran  𝑉 )  ⊆  ( Base ‘ 𝑃 ) ) ) ) | 
						
							| 53 | 26 52 | syl | ⊢ ( 𝜑  →  ( ( 𝐴 ‘ ran  𝑉 )  ∈  ( SubRing ‘ 𝑃 )  ↔  ( ( 𝐴 ‘ ran  𝑉 )  ∈  ( SubRing ‘ 𝑆 )  ∧  ( 𝐴 ‘ ran  𝑉 )  ⊆  ( Base ‘ 𝑃 ) ) ) ) | 
						
							| 54 | 50 31 53 | mpbir2and | ⊢ ( 𝜑  →  ( 𝐴 ‘ ran  𝑉 )  ∈  ( SubRing ‘ 𝑃 ) ) | 
						
							| 55 |  | subrgsubg | ⊢ ( ( 𝐴 ‘ ran  𝑉 )  ∈  ( SubRing ‘ 𝑃 )  →  ( 𝐴 ‘ ran  𝑉 )  ∈  ( SubGrp ‘ 𝑃 ) ) | 
						
							| 56 | 54 55 | syl | ⊢ ( 𝜑  →  ( 𝐴 ‘ ran  𝑉 )  ∈  ( SubGrp ‘ 𝑃 ) ) | 
						
							| 57 | 56 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑃 ) )  →  ( 𝐴 ‘ ran  𝑉 )  ∈  ( SubGrp ‘ 𝑃 ) ) | 
						
							| 58 | 1 5 13 | mpllmodd | ⊢ ( 𝜑  →  𝑃  ∈  LMod ) | 
						
							| 59 | 58 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑃 ) )  ∧  𝑘  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } )  →  𝑃  ∈  LMod ) | 
						
							| 60 | 4 9 28 | asplss | ⊢ ( ( 𝑆  ∈  AssAlg  ∧  ran  𝑉  ⊆  ( Base ‘ 𝑆 ) )  →  ( 𝐴 ‘ ran  𝑉 )  ∈  ( LSubSp ‘ 𝑆 ) ) | 
						
							| 61 | 7 48 60 | syl2anc | ⊢ ( 𝜑  →  ( 𝐴 ‘ ran  𝑉 )  ∈  ( LSubSp ‘ 𝑆 ) ) | 
						
							| 62 | 2 5 13 | psrlmod | ⊢ ( 𝜑  →  𝑆  ∈  LMod ) | 
						
							| 63 |  | eqid | ⊢ ( LSubSp ‘ 𝑃 )  =  ( LSubSp ‘ 𝑃 ) | 
						
							| 64 | 51 28 63 | lsslss | ⊢ ( ( 𝑆  ∈  LMod  ∧  ( Base ‘ 𝑃 )  ∈  ( LSubSp ‘ 𝑆 ) )  →  ( ( 𝐴 ‘ ran  𝑉 )  ∈  ( LSubSp ‘ 𝑃 )  ↔  ( ( 𝐴 ‘ ran  𝑉 )  ∈  ( LSubSp ‘ 𝑆 )  ∧  ( 𝐴 ‘ ran  𝑉 )  ⊆  ( Base ‘ 𝑃 ) ) ) ) | 
						
							| 65 | 62 27 64 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝐴 ‘ ran  𝑉 )  ∈  ( LSubSp ‘ 𝑃 )  ↔  ( ( 𝐴 ‘ ran  𝑉 )  ∈  ( LSubSp ‘ 𝑆 )  ∧  ( 𝐴 ‘ ran  𝑉 )  ⊆  ( Base ‘ 𝑃 ) ) ) ) | 
						
							| 66 | 61 31 65 | mpbir2and | ⊢ ( 𝜑  →  ( 𝐴 ‘ ran  𝑉 )  ∈  ( LSubSp ‘ 𝑃 ) ) | 
						
							| 67 | 66 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑃 ) )  ∧  𝑘  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } )  →  ( 𝐴 ‘ ran  𝑉 )  ∈  ( LSubSp ‘ 𝑃 ) ) | 
						
							| 68 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 69 | 1 68 8 32 38 | mplelf | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑃 ) )  →  𝑥 : { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 70 | 69 | ffvelcdmda | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑃 ) )  ∧  𝑘  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } )  →  ( 𝑥 ‘ 𝑘 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 71 | 1 35 37 | mplsca | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑃 ) )  →  𝑅  =  ( Scalar ‘ 𝑃 ) ) | 
						
							| 72 | 71 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑃 ) )  ∧  𝑘  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } )  →  𝑅  =  ( Scalar ‘ 𝑃 ) ) | 
						
							| 73 | 72 | fveq2d | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑃 ) )  ∧  𝑘  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } )  →  ( Base ‘ 𝑅 )  =  ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) | 
						
							| 74 | 70 73 | eleqtrd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑃 ) )  ∧  𝑘  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } )  →  ( 𝑥 ‘ 𝑘 )  ∈  ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) | 
						
							| 75 | 5 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑃 ) )  ∧  𝑘  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } )  →  𝐼  ∈  𝑊 ) | 
						
							| 76 |  | eqid | ⊢ ( mulGrp ‘ 𝑃 )  =  ( mulGrp ‘ 𝑃 ) | 
						
							| 77 |  | eqid | ⊢ ( .g ‘ ( mulGrp ‘ 𝑃 ) )  =  ( .g ‘ ( mulGrp ‘ 𝑃 ) ) | 
						
							| 78 | 6 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑃 ) )  ∧  𝑘  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } )  →  𝑅  ∈  CRing ) | 
						
							| 79 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑃 ) )  ∧  𝑘  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } )  →  𝑘  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } ) | 
						
							| 80 | 1 32 33 34 75 76 77 3 78 79 | mplcoe2 | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑃 ) )  ∧  𝑘  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } )  →  ( 𝑦  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ↦  if ( 𝑦  =  𝑘 ,  ( 1r ‘ 𝑅 ) ,  ( 0g ‘ 𝑅 ) ) )  =  ( ( mulGrp ‘ 𝑃 )  Σg  ( 𝑧  ∈  𝐼  ↦  ( ( 𝑘 ‘ 𝑧 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( 𝑉 ‘ 𝑧 ) ) ) ) ) | 
						
							| 81 |  | eqid | ⊢ ( 1r ‘ 𝑃 )  =  ( 1r ‘ 𝑃 ) | 
						
							| 82 | 76 81 | ringidval | ⊢ ( 1r ‘ 𝑃 )  =  ( 0g ‘ ( mulGrp ‘ 𝑃 ) ) | 
						
							| 83 | 1 | mplcrng | ⊢ ( ( 𝐼  ∈  𝑊  ∧  𝑅  ∈  CRing )  →  𝑃  ∈  CRing ) | 
						
							| 84 | 5 6 83 | syl2anc | ⊢ ( 𝜑  →  𝑃  ∈  CRing ) | 
						
							| 85 | 76 | crngmgp | ⊢ ( 𝑃  ∈  CRing  →  ( mulGrp ‘ 𝑃 )  ∈  CMnd ) | 
						
							| 86 | 84 85 | syl | ⊢ ( 𝜑  →  ( mulGrp ‘ 𝑃 )  ∈  CMnd ) | 
						
							| 87 | 86 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑃 ) )  ∧  𝑘  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } )  →  ( mulGrp ‘ 𝑃 )  ∈  CMnd ) | 
						
							| 88 | 54 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑃 ) )  ∧  𝑘  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } )  →  ( 𝐴 ‘ ran  𝑉 )  ∈  ( SubRing ‘ 𝑃 ) ) | 
						
							| 89 | 76 | subrgsubm | ⊢ ( ( 𝐴 ‘ ran  𝑉 )  ∈  ( SubRing ‘ 𝑃 )  →  ( 𝐴 ‘ ran  𝑉 )  ∈  ( SubMnd ‘ ( mulGrp ‘ 𝑃 ) ) ) | 
						
							| 90 | 88 89 | syl | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑃 ) )  ∧  𝑘  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } )  →  ( 𝐴 ‘ ran  𝑉 )  ∈  ( SubMnd ‘ ( mulGrp ‘ 𝑃 ) ) ) | 
						
							| 91 |  | simplll | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑃 ) )  ∧  𝑘  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } )  ∧  𝑧  ∈  𝐼 )  →  𝜑 ) | 
						
							| 92 | 32 | psrbag | ⊢ ( 𝐼  ∈  𝑊  →  ( 𝑘  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ↔  ( 𝑘 : 𝐼 ⟶ ℕ0  ∧  ( ◡ 𝑘  “  ℕ )  ∈  Fin ) ) ) | 
						
							| 93 | 35 92 | syl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑃 ) )  →  ( 𝑘  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ↔  ( 𝑘 : 𝐼 ⟶ ℕ0  ∧  ( ◡ 𝑘  “  ℕ )  ∈  Fin ) ) ) | 
						
							| 94 | 93 | biimpa | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑃 ) )  ∧  𝑘  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } )  →  ( 𝑘 : 𝐼 ⟶ ℕ0  ∧  ( ◡ 𝑘  “  ℕ )  ∈  Fin ) ) | 
						
							| 95 | 94 | simpld | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑃 ) )  ∧  𝑘  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } )  →  𝑘 : 𝐼 ⟶ ℕ0 ) | 
						
							| 96 | 95 | ffvelcdmda | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑃 ) )  ∧  𝑘  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } )  ∧  𝑧  ∈  𝐼 )  →  ( 𝑘 ‘ 𝑧 )  ∈  ℕ0 ) | 
						
							| 97 | 4 9 | aspssid | ⊢ ( ( 𝑆  ∈  AssAlg  ∧  ran  𝑉  ⊆  ( Base ‘ 𝑆 ) )  →  ran  𝑉  ⊆  ( 𝐴 ‘ ran  𝑉 ) ) | 
						
							| 98 | 7 48 97 | syl2anc | ⊢ ( 𝜑  →  ran  𝑉  ⊆  ( 𝐴 ‘ ran  𝑉 ) ) | 
						
							| 99 | 98 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑃 ) )  ∧  𝑘  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } )  ∧  𝑧  ∈  𝐼 )  →  ran  𝑉  ⊆  ( 𝐴 ‘ ran  𝑉 ) ) | 
						
							| 100 | 15 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑃 ) )  ∧  𝑘  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } )  →  𝑉  Fn  𝐼 ) | 
						
							| 101 |  | fnfvelrn | ⊢ ( ( 𝑉  Fn  𝐼  ∧  𝑧  ∈  𝐼 )  →  ( 𝑉 ‘ 𝑧 )  ∈  ran  𝑉 ) | 
						
							| 102 | 100 101 | sylan | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑃 ) )  ∧  𝑘  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } )  ∧  𝑧  ∈  𝐼 )  →  ( 𝑉 ‘ 𝑧 )  ∈  ran  𝑉 ) | 
						
							| 103 | 99 102 | sseldd | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑃 ) )  ∧  𝑘  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } )  ∧  𝑧  ∈  𝐼 )  →  ( 𝑉 ‘ 𝑧 )  ∈  ( 𝐴 ‘ ran  𝑉 ) ) | 
						
							| 104 | 76 8 | mgpbas | ⊢ ( Base ‘ 𝑃 )  =  ( Base ‘ ( mulGrp ‘ 𝑃 ) ) | 
						
							| 105 |  | eqid | ⊢ ( .r ‘ 𝑃 )  =  ( .r ‘ 𝑃 ) | 
						
							| 106 | 76 105 | mgpplusg | ⊢ ( .r ‘ 𝑃 )  =  ( +g ‘ ( mulGrp ‘ 𝑃 ) ) | 
						
							| 107 | 105 | subrgmcl | ⊢ ( ( ( 𝐴 ‘ ran  𝑉 )  ∈  ( SubRing ‘ 𝑃 )  ∧  𝑢  ∈  ( 𝐴 ‘ ran  𝑉 )  ∧  𝑣  ∈  ( 𝐴 ‘ ran  𝑉 ) )  →  ( 𝑢 ( .r ‘ 𝑃 ) 𝑣 )  ∈  ( 𝐴 ‘ ran  𝑉 ) ) | 
						
							| 108 | 54 107 | syl3an1 | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( 𝐴 ‘ ran  𝑉 )  ∧  𝑣  ∈  ( 𝐴 ‘ ran  𝑉 ) )  →  ( 𝑢 ( .r ‘ 𝑃 ) 𝑣 )  ∈  ( 𝐴 ‘ ran  𝑉 ) ) | 
						
							| 109 | 81 | subrg1cl | ⊢ ( ( 𝐴 ‘ ran  𝑉 )  ∈  ( SubRing ‘ 𝑃 )  →  ( 1r ‘ 𝑃 )  ∈  ( 𝐴 ‘ ran  𝑉 ) ) | 
						
							| 110 | 54 109 | syl | ⊢ ( 𝜑  →  ( 1r ‘ 𝑃 )  ∈  ( 𝐴 ‘ ran  𝑉 ) ) | 
						
							| 111 | 104 77 106 86 31 108 82 110 | mulgnn0subcl | ⊢ ( ( 𝜑  ∧  ( 𝑘 ‘ 𝑧 )  ∈  ℕ0  ∧  ( 𝑉 ‘ 𝑧 )  ∈  ( 𝐴 ‘ ran  𝑉 ) )  →  ( ( 𝑘 ‘ 𝑧 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( 𝑉 ‘ 𝑧 ) )  ∈  ( 𝐴 ‘ ran  𝑉 ) ) | 
						
							| 112 | 91 96 103 111 | syl3anc | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑃 ) )  ∧  𝑘  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } )  ∧  𝑧  ∈  𝐼 )  →  ( ( 𝑘 ‘ 𝑧 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( 𝑉 ‘ 𝑧 ) )  ∈  ( 𝐴 ‘ ran  𝑉 ) ) | 
						
							| 113 | 112 | fmpttd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑃 ) )  ∧  𝑘  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } )  →  ( 𝑧  ∈  𝐼  ↦  ( ( 𝑘 ‘ 𝑧 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( 𝑉 ‘ 𝑧 ) ) ) : 𝐼 ⟶ ( 𝐴 ‘ ran  𝑉 ) ) | 
						
							| 114 | 5 | mptexd | ⊢ ( 𝜑  →  ( 𝑧  ∈  𝐼  ↦  ( ( 𝑘 ‘ 𝑧 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( 𝑉 ‘ 𝑧 ) ) )  ∈  V ) | 
						
							| 115 | 114 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑃 ) )  ∧  𝑘  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } )  →  ( 𝑧  ∈  𝐼  ↦  ( ( 𝑘 ‘ 𝑧 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( 𝑉 ‘ 𝑧 ) ) )  ∈  V ) | 
						
							| 116 |  | funmpt | ⊢ Fun  ( 𝑧  ∈  𝐼  ↦  ( ( 𝑘 ‘ 𝑧 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( 𝑉 ‘ 𝑧 ) ) ) | 
						
							| 117 | 116 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑃 ) )  ∧  𝑘  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } )  →  Fun  ( 𝑧  ∈  𝐼  ↦  ( ( 𝑘 ‘ 𝑧 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( 𝑉 ‘ 𝑧 ) ) ) ) | 
						
							| 118 |  | fvexd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑃 ) )  ∧  𝑘  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } )  →  ( 1r ‘ 𝑃 )  ∈  V ) | 
						
							| 119 | 94 | simprd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑃 ) )  ∧  𝑘  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } )  →  ( ◡ 𝑘  “  ℕ )  ∈  Fin ) | 
						
							| 120 |  | elrabi | ⊢ ( 𝑘  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  →  𝑘  ∈  ( ℕ0  ↑m  𝐼 ) ) | 
						
							| 121 |  | elmapi | ⊢ ( 𝑘  ∈  ( ℕ0  ↑m  𝐼 )  →  𝑘 : 𝐼 ⟶ ℕ0 ) | 
						
							| 122 | 121 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑃 ) )  ∧  𝑘  ∈  ( ℕ0  ↑m  𝐼 ) )  →  𝑘 : 𝐼 ⟶ ℕ0 ) | 
						
							| 123 | 5 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑃 ) )  ∧  𝑘  ∈  ( ℕ0  ↑m  𝐼 ) )  →  𝐼  ∈  𝑊 ) | 
						
							| 124 |  | fcdmnn0supp | ⊢ ( ( 𝐼  ∈  𝑊  ∧  𝑘 : 𝐼 ⟶ ℕ0 )  →  ( 𝑘  supp  0 )  =  ( ◡ 𝑘  “  ℕ ) ) | 
						
							| 125 | 123 122 124 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑃 ) )  ∧  𝑘  ∈  ( ℕ0  ↑m  𝐼 ) )  →  ( 𝑘  supp  0 )  =  ( ◡ 𝑘  “  ℕ ) ) | 
						
							| 126 |  | eqimss | ⊢ ( ( 𝑘  supp  0 )  =  ( ◡ 𝑘  “  ℕ )  →  ( 𝑘  supp  0 )  ⊆  ( ◡ 𝑘  “  ℕ ) ) | 
						
							| 127 | 125 126 | syl | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑃 ) )  ∧  𝑘  ∈  ( ℕ0  ↑m  𝐼 ) )  →  ( 𝑘  supp  0 )  ⊆  ( ◡ 𝑘  “  ℕ ) ) | 
						
							| 128 |  | c0ex | ⊢ 0  ∈  V | 
						
							| 129 | 128 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑃 ) )  ∧  𝑘  ∈  ( ℕ0  ↑m  𝐼 ) )  →  0  ∈  V ) | 
						
							| 130 | 122 127 123 129 | suppssr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑃 ) )  ∧  𝑘  ∈  ( ℕ0  ↑m  𝐼 ) )  ∧  𝑧  ∈  ( 𝐼  ∖  ( ◡ 𝑘  “  ℕ ) ) )  →  ( 𝑘 ‘ 𝑧 )  =  0 ) | 
						
							| 131 | 120 130 | sylanl2 | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑃 ) )  ∧  𝑘  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } )  ∧  𝑧  ∈  ( 𝐼  ∖  ( ◡ 𝑘  “  ℕ ) ) )  →  ( 𝑘 ‘ 𝑧 )  =  0 ) | 
						
							| 132 | 131 | oveq1d | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑃 ) )  ∧  𝑘  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } )  ∧  𝑧  ∈  ( 𝐼  ∖  ( ◡ 𝑘  “  ℕ ) ) )  →  ( ( 𝑘 ‘ 𝑧 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( 𝑉 ‘ 𝑧 ) )  =  ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( 𝑉 ‘ 𝑧 ) ) ) | 
						
							| 133 | 5 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑃 ) )  ∧  𝑘  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } )  ∧  𝑧  ∈  ( 𝐼  ∖  ( ◡ 𝑘  “  ℕ ) ) )  →  𝐼  ∈  𝑊 ) | 
						
							| 134 | 13 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑃 ) )  ∧  𝑘  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } )  ∧  𝑧  ∈  ( 𝐼  ∖  ( ◡ 𝑘  “  ℕ ) ) )  →  𝑅  ∈  Ring ) | 
						
							| 135 |  | eldifi | ⊢ ( 𝑧  ∈  ( 𝐼  ∖  ( ◡ 𝑘  “  ℕ ) )  →  𝑧  ∈  𝐼 ) | 
						
							| 136 | 135 | adantl | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑃 ) )  ∧  𝑘  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } )  ∧  𝑧  ∈  ( 𝐼  ∖  ( ◡ 𝑘  “  ℕ ) ) )  →  𝑧  ∈  𝐼 ) | 
						
							| 137 | 1 3 8 133 134 136 | mvrcl | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑃 ) )  ∧  𝑘  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } )  ∧  𝑧  ∈  ( 𝐼  ∖  ( ◡ 𝑘  “  ℕ ) ) )  →  ( 𝑉 ‘ 𝑧 )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 138 | 104 82 77 | mulg0 | ⊢ ( ( 𝑉 ‘ 𝑧 )  ∈  ( Base ‘ 𝑃 )  →  ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( 𝑉 ‘ 𝑧 ) )  =  ( 1r ‘ 𝑃 ) ) | 
						
							| 139 | 137 138 | syl | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑃 ) )  ∧  𝑘  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } )  ∧  𝑧  ∈  ( 𝐼  ∖  ( ◡ 𝑘  “  ℕ ) ) )  →  ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( 𝑉 ‘ 𝑧 ) )  =  ( 1r ‘ 𝑃 ) ) | 
						
							| 140 | 132 139 | eqtrd | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑃 ) )  ∧  𝑘  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } )  ∧  𝑧  ∈  ( 𝐼  ∖  ( ◡ 𝑘  “  ℕ ) ) )  →  ( ( 𝑘 ‘ 𝑧 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( 𝑉 ‘ 𝑧 ) )  =  ( 1r ‘ 𝑃 ) ) | 
						
							| 141 | 140 75 | suppss2 | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑃 ) )  ∧  𝑘  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } )  →  ( ( 𝑧  ∈  𝐼  ↦  ( ( 𝑘 ‘ 𝑧 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( 𝑉 ‘ 𝑧 ) ) )  supp  ( 1r ‘ 𝑃 ) )  ⊆  ( ◡ 𝑘  “  ℕ ) ) | 
						
							| 142 |  | suppssfifsupp | ⊢ ( ( ( ( 𝑧  ∈  𝐼  ↦  ( ( 𝑘 ‘ 𝑧 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( 𝑉 ‘ 𝑧 ) ) )  ∈  V  ∧  Fun  ( 𝑧  ∈  𝐼  ↦  ( ( 𝑘 ‘ 𝑧 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( 𝑉 ‘ 𝑧 ) ) )  ∧  ( 1r ‘ 𝑃 )  ∈  V )  ∧  ( ( ◡ 𝑘  “  ℕ )  ∈  Fin  ∧  ( ( 𝑧  ∈  𝐼  ↦  ( ( 𝑘 ‘ 𝑧 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( 𝑉 ‘ 𝑧 ) ) )  supp  ( 1r ‘ 𝑃 ) )  ⊆  ( ◡ 𝑘  “  ℕ ) ) )  →  ( 𝑧  ∈  𝐼  ↦  ( ( 𝑘 ‘ 𝑧 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( 𝑉 ‘ 𝑧 ) ) )  finSupp  ( 1r ‘ 𝑃 ) ) | 
						
							| 143 | 115 117 118 119 141 142 | syl32anc | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑃 ) )  ∧  𝑘  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } )  →  ( 𝑧  ∈  𝐼  ↦  ( ( 𝑘 ‘ 𝑧 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( 𝑉 ‘ 𝑧 ) ) )  finSupp  ( 1r ‘ 𝑃 ) ) | 
						
							| 144 | 82 87 75 90 113 143 | gsumsubmcl | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑃 ) )  ∧  𝑘  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } )  →  ( ( mulGrp ‘ 𝑃 )  Σg  ( 𝑧  ∈  𝐼  ↦  ( ( 𝑘 ‘ 𝑧 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( 𝑉 ‘ 𝑧 ) ) ) )  ∈  ( 𝐴 ‘ ran  𝑉 ) ) | 
						
							| 145 | 80 144 | eqeltrd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑃 ) )  ∧  𝑘  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } )  →  ( 𝑦  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ↦  if ( 𝑦  =  𝑘 ,  ( 1r ‘ 𝑅 ) ,  ( 0g ‘ 𝑅 ) ) )  ∈  ( 𝐴 ‘ ran  𝑉 ) ) | 
						
							| 146 |  | eqid | ⊢ ( Scalar ‘ 𝑃 )  =  ( Scalar ‘ 𝑃 ) | 
						
							| 147 |  | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑃 ) )  =  ( Base ‘ ( Scalar ‘ 𝑃 ) ) | 
						
							| 148 | 146 36 147 63 | lssvscl | ⊢ ( ( ( 𝑃  ∈  LMod  ∧  ( 𝐴 ‘ ran  𝑉 )  ∈  ( LSubSp ‘ 𝑃 ) )  ∧  ( ( 𝑥 ‘ 𝑘 )  ∈  ( Base ‘ ( Scalar ‘ 𝑃 ) )  ∧  ( 𝑦  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ↦  if ( 𝑦  =  𝑘 ,  ( 1r ‘ 𝑅 ) ,  ( 0g ‘ 𝑅 ) ) )  ∈  ( 𝐴 ‘ ran  𝑉 ) ) )  →  ( ( 𝑥 ‘ 𝑘 ) (  ·𝑠  ‘ 𝑃 ) ( 𝑦  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ↦  if ( 𝑦  =  𝑘 ,  ( 1r ‘ 𝑅 ) ,  ( 0g ‘ 𝑅 ) ) ) )  ∈  ( 𝐴 ‘ ran  𝑉 ) ) | 
						
							| 149 | 59 67 74 145 148 | syl22anc | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑃 ) )  ∧  𝑘  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } )  →  ( ( 𝑥 ‘ 𝑘 ) (  ·𝑠  ‘ 𝑃 ) ( 𝑦  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ↦  if ( 𝑦  =  𝑘 ,  ( 1r ‘ 𝑅 ) ,  ( 0g ‘ 𝑅 ) ) ) )  ∈  ( 𝐴 ‘ ran  𝑉 ) ) | 
						
							| 150 | 149 | fmpttd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑃 ) )  →  ( 𝑘  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ↦  ( ( 𝑥 ‘ 𝑘 ) (  ·𝑠  ‘ 𝑃 ) ( 𝑦  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ↦  if ( 𝑦  =  𝑘 ,  ( 1r ‘ 𝑅 ) ,  ( 0g ‘ 𝑅 ) ) ) ) ) : { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } ⟶ ( 𝐴 ‘ ran  𝑉 ) ) | 
						
							| 151 | 45 | mptrabex | ⊢ ( 𝑘  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ↦  ( ( 𝑥 ‘ 𝑘 ) (  ·𝑠  ‘ 𝑃 ) ( 𝑦  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ↦  if ( 𝑦  =  𝑘 ,  ( 1r ‘ 𝑅 ) ,  ( 0g ‘ 𝑅 ) ) ) ) )  ∈  V | 
						
							| 152 |  | funmpt | ⊢ Fun  ( 𝑘  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ↦  ( ( 𝑥 ‘ 𝑘 ) (  ·𝑠  ‘ 𝑃 ) ( 𝑦  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ↦  if ( 𝑦  =  𝑘 ,  ( 1r ‘ 𝑅 ) ,  ( 0g ‘ 𝑅 ) ) ) ) ) | 
						
							| 153 |  | fvex | ⊢ ( 0g ‘ 𝑃 )  ∈  V | 
						
							| 154 | 151 152 153 | 3pm3.2i | ⊢ ( ( 𝑘  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ↦  ( ( 𝑥 ‘ 𝑘 ) (  ·𝑠  ‘ 𝑃 ) ( 𝑦  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ↦  if ( 𝑦  =  𝑘 ,  ( 1r ‘ 𝑅 ) ,  ( 0g ‘ 𝑅 ) ) ) ) )  ∈  V  ∧  Fun  ( 𝑘  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ↦  ( ( 𝑥 ‘ 𝑘 ) (  ·𝑠  ‘ 𝑃 ) ( 𝑦  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ↦  if ( 𝑦  =  𝑘 ,  ( 1r ‘ 𝑅 ) ,  ( 0g ‘ 𝑅 ) ) ) ) )  ∧  ( 0g ‘ 𝑃 )  ∈  V ) | 
						
							| 155 | 154 | a1i | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑃 ) )  →  ( ( 𝑘  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ↦  ( ( 𝑥 ‘ 𝑘 ) (  ·𝑠  ‘ 𝑃 ) ( 𝑦  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ↦  if ( 𝑦  =  𝑘 ,  ( 1r ‘ 𝑅 ) ,  ( 0g ‘ 𝑅 ) ) ) ) )  ∈  V  ∧  Fun  ( 𝑘  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ↦  ( ( 𝑥 ‘ 𝑘 ) (  ·𝑠  ‘ 𝑃 ) ( 𝑦  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ↦  if ( 𝑦  =  𝑘 ,  ( 1r ‘ 𝑅 ) ,  ( 0g ‘ 𝑅 ) ) ) ) )  ∧  ( 0g ‘ 𝑃 )  ∈  V ) ) | 
						
							| 156 | 1 2 9 33 8 | mplelbas | ⊢ ( 𝑥  ∈  ( Base ‘ 𝑃 )  ↔  ( 𝑥  ∈  ( Base ‘ 𝑆 )  ∧  𝑥  finSupp  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 157 | 156 | simprbi | ⊢ ( 𝑥  ∈  ( Base ‘ 𝑃 )  →  𝑥  finSupp  ( 0g ‘ 𝑅 ) ) | 
						
							| 158 | 157 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑃 ) )  →  𝑥  finSupp  ( 0g ‘ 𝑅 ) ) | 
						
							| 159 | 158 | fsuppimpd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑃 ) )  →  ( 𝑥  supp  ( 0g ‘ 𝑅 ) )  ∈  Fin ) | 
						
							| 160 |  | ssidd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑃 ) )  →  ( 𝑥  supp  ( 0g ‘ 𝑅 ) )  ⊆  ( 𝑥  supp  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 161 |  | fvexd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑃 ) )  →  ( 0g ‘ 𝑅 )  ∈  V ) | 
						
							| 162 | 69 160 47 161 | suppssr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑃 ) )  ∧  𝑘  ∈  ( { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ∖  ( 𝑥  supp  ( 0g ‘ 𝑅 ) ) ) )  →  ( 𝑥 ‘ 𝑘 )  =  ( 0g ‘ 𝑅 ) ) | 
						
							| 163 | 71 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑃 ) )  →  ( 0g ‘ 𝑅 )  =  ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ) | 
						
							| 164 | 163 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑃 ) )  ∧  𝑘  ∈  ( { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ∖  ( 𝑥  supp  ( 0g ‘ 𝑅 ) ) ) )  →  ( 0g ‘ 𝑅 )  =  ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ) | 
						
							| 165 | 162 164 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑃 ) )  ∧  𝑘  ∈  ( { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ∖  ( 𝑥  supp  ( 0g ‘ 𝑅 ) ) ) )  →  ( 𝑥 ‘ 𝑘 )  =  ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ) | 
						
							| 166 | 165 | oveq1d | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑃 ) )  ∧  𝑘  ∈  ( { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ∖  ( 𝑥  supp  ( 0g ‘ 𝑅 ) ) ) )  →  ( ( 𝑥 ‘ 𝑘 ) (  ·𝑠  ‘ 𝑃 ) ( 𝑦  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ↦  if ( 𝑦  =  𝑘 ,  ( 1r ‘ 𝑅 ) ,  ( 0g ‘ 𝑅 ) ) ) )  =  ( ( 0g ‘ ( Scalar ‘ 𝑃 ) ) (  ·𝑠  ‘ 𝑃 ) ( 𝑦  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ↦  if ( 𝑦  =  𝑘 ,  ( 1r ‘ 𝑅 ) ,  ( 0g ‘ 𝑅 ) ) ) ) ) | 
						
							| 167 |  | eldifi | ⊢ ( 𝑘  ∈  ( { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ∖  ( 𝑥  supp  ( 0g ‘ 𝑅 ) ) )  →  𝑘  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } ) | 
						
							| 168 | 13 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑃 ) )  ∧  𝑘  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } )  →  𝑅  ∈  Ring ) | 
						
							| 169 | 1 8 33 34 32 75 168 79 | mplmon | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑃 ) )  ∧  𝑘  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } )  →  ( 𝑦  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ↦  if ( 𝑦  =  𝑘 ,  ( 1r ‘ 𝑅 ) ,  ( 0g ‘ 𝑅 ) ) )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 170 |  | eqid | ⊢ ( 0g ‘ ( Scalar ‘ 𝑃 ) )  =  ( 0g ‘ ( Scalar ‘ 𝑃 ) ) | 
						
							| 171 | 8 146 36 170 40 | lmod0vs | ⊢ ( ( 𝑃  ∈  LMod  ∧  ( 𝑦  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ↦  if ( 𝑦  =  𝑘 ,  ( 1r ‘ 𝑅 ) ,  ( 0g ‘ 𝑅 ) ) )  ∈  ( Base ‘ 𝑃 ) )  →  ( ( 0g ‘ ( Scalar ‘ 𝑃 ) ) (  ·𝑠  ‘ 𝑃 ) ( 𝑦  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ↦  if ( 𝑦  =  𝑘 ,  ( 1r ‘ 𝑅 ) ,  ( 0g ‘ 𝑅 ) ) ) )  =  ( 0g ‘ 𝑃 ) ) | 
						
							| 172 | 59 169 171 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑃 ) )  ∧  𝑘  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } )  →  ( ( 0g ‘ ( Scalar ‘ 𝑃 ) ) (  ·𝑠  ‘ 𝑃 ) ( 𝑦  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ↦  if ( 𝑦  =  𝑘 ,  ( 1r ‘ 𝑅 ) ,  ( 0g ‘ 𝑅 ) ) ) )  =  ( 0g ‘ 𝑃 ) ) | 
						
							| 173 | 167 172 | sylan2 | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑃 ) )  ∧  𝑘  ∈  ( { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ∖  ( 𝑥  supp  ( 0g ‘ 𝑅 ) ) ) )  →  ( ( 0g ‘ ( Scalar ‘ 𝑃 ) ) (  ·𝑠  ‘ 𝑃 ) ( 𝑦  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ↦  if ( 𝑦  =  𝑘 ,  ( 1r ‘ 𝑅 ) ,  ( 0g ‘ 𝑅 ) ) ) )  =  ( 0g ‘ 𝑃 ) ) | 
						
							| 174 | 166 173 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑃 ) )  ∧  𝑘  ∈  ( { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ∖  ( 𝑥  supp  ( 0g ‘ 𝑅 ) ) ) )  →  ( ( 𝑥 ‘ 𝑘 ) (  ·𝑠  ‘ 𝑃 ) ( 𝑦  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ↦  if ( 𝑦  =  𝑘 ,  ( 1r ‘ 𝑅 ) ,  ( 0g ‘ 𝑅 ) ) ) )  =  ( 0g ‘ 𝑃 ) ) | 
						
							| 175 | 174 47 | suppss2 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑃 ) )  →  ( ( 𝑘  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ↦  ( ( 𝑥 ‘ 𝑘 ) (  ·𝑠  ‘ 𝑃 ) ( 𝑦  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ↦  if ( 𝑦  =  𝑘 ,  ( 1r ‘ 𝑅 ) ,  ( 0g ‘ 𝑅 ) ) ) ) )  supp  ( 0g ‘ 𝑃 ) )  ⊆  ( 𝑥  supp  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 176 |  | suppssfifsupp | ⊢ ( ( ( ( 𝑘  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ↦  ( ( 𝑥 ‘ 𝑘 ) (  ·𝑠  ‘ 𝑃 ) ( 𝑦  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ↦  if ( 𝑦  =  𝑘 ,  ( 1r ‘ 𝑅 ) ,  ( 0g ‘ 𝑅 ) ) ) ) )  ∈  V  ∧  Fun  ( 𝑘  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ↦  ( ( 𝑥 ‘ 𝑘 ) (  ·𝑠  ‘ 𝑃 ) ( 𝑦  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ↦  if ( 𝑦  =  𝑘 ,  ( 1r ‘ 𝑅 ) ,  ( 0g ‘ 𝑅 ) ) ) ) )  ∧  ( 0g ‘ 𝑃 )  ∈  V )  ∧  ( ( 𝑥  supp  ( 0g ‘ 𝑅 ) )  ∈  Fin  ∧  ( ( 𝑘  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ↦  ( ( 𝑥 ‘ 𝑘 ) (  ·𝑠  ‘ 𝑃 ) ( 𝑦  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ↦  if ( 𝑦  =  𝑘 ,  ( 1r ‘ 𝑅 ) ,  ( 0g ‘ 𝑅 ) ) ) ) )  supp  ( 0g ‘ 𝑃 ) )  ⊆  ( 𝑥  supp  ( 0g ‘ 𝑅 ) ) ) )  →  ( 𝑘  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ↦  ( ( 𝑥 ‘ 𝑘 ) (  ·𝑠  ‘ 𝑃 ) ( 𝑦  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ↦  if ( 𝑦  =  𝑘 ,  ( 1r ‘ 𝑅 ) ,  ( 0g ‘ 𝑅 ) ) ) ) )  finSupp  ( 0g ‘ 𝑃 ) ) | 
						
							| 177 | 155 159 175 176 | syl12anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑃 ) )  →  ( 𝑘  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ↦  ( ( 𝑥 ‘ 𝑘 ) (  ·𝑠  ‘ 𝑃 ) ( 𝑦  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ↦  if ( 𝑦  =  𝑘 ,  ( 1r ‘ 𝑅 ) ,  ( 0g ‘ 𝑅 ) ) ) ) )  finSupp  ( 0g ‘ 𝑃 ) ) | 
						
							| 178 | 40 44 47 57 150 177 | gsumsubgcl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑃 ) )  →  ( 𝑃  Σg  ( 𝑘  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ↦  ( ( 𝑥 ‘ 𝑘 ) (  ·𝑠  ‘ 𝑃 ) ( 𝑦  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ↦  if ( 𝑦  =  𝑘 ,  ( 1r ‘ 𝑅 ) ,  ( 0g ‘ 𝑅 ) ) ) ) ) )  ∈  ( 𝐴 ‘ ran  𝑉 ) ) | 
						
							| 179 | 39 178 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑃 ) )  →  𝑥  ∈  ( 𝐴 ‘ ran  𝑉 ) ) | 
						
							| 180 | 31 179 | eqelssd | ⊢ ( 𝜑  →  ( 𝐴 ‘ ran  𝑉 )  =  ( Base ‘ 𝑃 ) ) |