Step |
Hyp |
Ref |
Expression |
1 |
|
mplbas2.p |
⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) |
2 |
|
mplbas2.s |
⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) |
3 |
|
mplbas2.v |
⊢ 𝑉 = ( 𝐼 mVar 𝑅 ) |
4 |
|
mplbas2.a |
⊢ 𝐴 = ( AlgSpan ‘ 𝑆 ) |
5 |
|
mplbas2.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) |
6 |
|
mplbas2.r |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
7 |
2 5 6
|
psrassa |
⊢ ( 𝜑 → 𝑆 ∈ AssAlg ) |
8 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
9 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
10 |
1 2 8 9
|
mplbasss |
⊢ ( Base ‘ 𝑃 ) ⊆ ( Base ‘ 𝑆 ) |
11 |
10
|
a1i |
⊢ ( 𝜑 → ( Base ‘ 𝑃 ) ⊆ ( Base ‘ 𝑆 ) ) |
12 |
|
crngring |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) |
13 |
6 12
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
14 |
2 3 9 5 13
|
mvrf |
⊢ ( 𝜑 → 𝑉 : 𝐼 ⟶ ( Base ‘ 𝑆 ) ) |
15 |
14
|
ffnd |
⊢ ( 𝜑 → 𝑉 Fn 𝐼 ) |
16 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝐼 ∈ 𝑊 ) |
17 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑅 ∈ Ring ) |
18 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑥 ∈ 𝐼 ) |
19 |
1 3 8 16 17 18
|
mvrcl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑉 ‘ 𝑥 ) ∈ ( Base ‘ 𝑃 ) ) |
20 |
19
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐼 ( 𝑉 ‘ 𝑥 ) ∈ ( Base ‘ 𝑃 ) ) |
21 |
|
ffnfv |
⊢ ( 𝑉 : 𝐼 ⟶ ( Base ‘ 𝑃 ) ↔ ( 𝑉 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑉 ‘ 𝑥 ) ∈ ( Base ‘ 𝑃 ) ) ) |
22 |
15 20 21
|
sylanbrc |
⊢ ( 𝜑 → 𝑉 : 𝐼 ⟶ ( Base ‘ 𝑃 ) ) |
23 |
22
|
frnd |
⊢ ( 𝜑 → ran 𝑉 ⊆ ( Base ‘ 𝑃 ) ) |
24 |
4 9
|
aspss |
⊢ ( ( 𝑆 ∈ AssAlg ∧ ( Base ‘ 𝑃 ) ⊆ ( Base ‘ 𝑆 ) ∧ ran 𝑉 ⊆ ( Base ‘ 𝑃 ) ) → ( 𝐴 ‘ ran 𝑉 ) ⊆ ( 𝐴 ‘ ( Base ‘ 𝑃 ) ) ) |
25 |
7 11 23 24
|
syl3anc |
⊢ ( 𝜑 → ( 𝐴 ‘ ran 𝑉 ) ⊆ ( 𝐴 ‘ ( Base ‘ 𝑃 ) ) ) |
26 |
2 1 8 5 13
|
mplsubrg |
⊢ ( 𝜑 → ( Base ‘ 𝑃 ) ∈ ( SubRing ‘ 𝑆 ) ) |
27 |
2 1 8 5 13
|
mpllss |
⊢ ( 𝜑 → ( Base ‘ 𝑃 ) ∈ ( LSubSp ‘ 𝑆 ) ) |
28 |
|
eqid |
⊢ ( LSubSp ‘ 𝑆 ) = ( LSubSp ‘ 𝑆 ) |
29 |
4 9 28
|
aspid |
⊢ ( ( 𝑆 ∈ AssAlg ∧ ( Base ‘ 𝑃 ) ∈ ( SubRing ‘ 𝑆 ) ∧ ( Base ‘ 𝑃 ) ∈ ( LSubSp ‘ 𝑆 ) ) → ( 𝐴 ‘ ( Base ‘ 𝑃 ) ) = ( Base ‘ 𝑃 ) ) |
30 |
7 26 27 29
|
syl3anc |
⊢ ( 𝜑 → ( 𝐴 ‘ ( Base ‘ 𝑃 ) ) = ( Base ‘ 𝑃 ) ) |
31 |
25 30
|
sseqtrd |
⊢ ( 𝜑 → ( 𝐴 ‘ ran 𝑉 ) ⊆ ( Base ‘ 𝑃 ) ) |
32 |
|
eqid |
⊢ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } |
33 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
34 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
35 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) → 𝐼 ∈ 𝑊 ) |
36 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑃 ) = ( ·𝑠 ‘ 𝑃 ) |
37 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) → 𝑅 ∈ Ring ) |
38 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) → 𝑥 ∈ ( Base ‘ 𝑃 ) ) |
39 |
1 32 33 34 35 8 36 37 38
|
mplcoe1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) → 𝑥 = ( 𝑃 Σg ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ ( ( 𝑥 ‘ 𝑘 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) ) ) ) |
40 |
|
eqid |
⊢ ( 0g ‘ 𝑃 ) = ( 0g ‘ 𝑃 ) |
41 |
1 5 13
|
mplringd |
⊢ ( 𝜑 → 𝑃 ∈ Ring ) |
42 |
|
ringabl |
⊢ ( 𝑃 ∈ Ring → 𝑃 ∈ Abel ) |
43 |
41 42
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ Abel ) |
44 |
43
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) → 𝑃 ∈ Abel ) |
45 |
|
ovex |
⊢ ( ℕ0 ↑m 𝐼 ) ∈ V |
46 |
45
|
rabex |
⊢ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∈ V |
47 |
46
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) → { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∈ V ) |
48 |
14
|
frnd |
⊢ ( 𝜑 → ran 𝑉 ⊆ ( Base ‘ 𝑆 ) ) |
49 |
4 9
|
aspsubrg |
⊢ ( ( 𝑆 ∈ AssAlg ∧ ran 𝑉 ⊆ ( Base ‘ 𝑆 ) ) → ( 𝐴 ‘ ran 𝑉 ) ∈ ( SubRing ‘ 𝑆 ) ) |
50 |
7 48 49
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 ‘ ran 𝑉 ) ∈ ( SubRing ‘ 𝑆 ) ) |
51 |
1 2 8
|
mplval2 |
⊢ 𝑃 = ( 𝑆 ↾s ( Base ‘ 𝑃 ) ) |
52 |
51
|
subsubrg |
⊢ ( ( Base ‘ 𝑃 ) ∈ ( SubRing ‘ 𝑆 ) → ( ( 𝐴 ‘ ran 𝑉 ) ∈ ( SubRing ‘ 𝑃 ) ↔ ( ( 𝐴 ‘ ran 𝑉 ) ∈ ( SubRing ‘ 𝑆 ) ∧ ( 𝐴 ‘ ran 𝑉 ) ⊆ ( Base ‘ 𝑃 ) ) ) ) |
53 |
26 52
|
syl |
⊢ ( 𝜑 → ( ( 𝐴 ‘ ran 𝑉 ) ∈ ( SubRing ‘ 𝑃 ) ↔ ( ( 𝐴 ‘ ran 𝑉 ) ∈ ( SubRing ‘ 𝑆 ) ∧ ( 𝐴 ‘ ran 𝑉 ) ⊆ ( Base ‘ 𝑃 ) ) ) ) |
54 |
50 31 53
|
mpbir2and |
⊢ ( 𝜑 → ( 𝐴 ‘ ran 𝑉 ) ∈ ( SubRing ‘ 𝑃 ) ) |
55 |
|
subrgsubg |
⊢ ( ( 𝐴 ‘ ran 𝑉 ) ∈ ( SubRing ‘ 𝑃 ) → ( 𝐴 ‘ ran 𝑉 ) ∈ ( SubGrp ‘ 𝑃 ) ) |
56 |
54 55
|
syl |
⊢ ( 𝜑 → ( 𝐴 ‘ ran 𝑉 ) ∈ ( SubGrp ‘ 𝑃 ) ) |
57 |
56
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) → ( 𝐴 ‘ ran 𝑉 ) ∈ ( SubGrp ‘ 𝑃 ) ) |
58 |
1 5 13
|
mpllmodd |
⊢ ( 𝜑 → 𝑃 ∈ LMod ) |
59 |
58
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → 𝑃 ∈ LMod ) |
60 |
4 9 28
|
asplss |
⊢ ( ( 𝑆 ∈ AssAlg ∧ ran 𝑉 ⊆ ( Base ‘ 𝑆 ) ) → ( 𝐴 ‘ ran 𝑉 ) ∈ ( LSubSp ‘ 𝑆 ) ) |
61 |
7 48 60
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 ‘ ran 𝑉 ) ∈ ( LSubSp ‘ 𝑆 ) ) |
62 |
2 5 13
|
psrlmod |
⊢ ( 𝜑 → 𝑆 ∈ LMod ) |
63 |
|
eqid |
⊢ ( LSubSp ‘ 𝑃 ) = ( LSubSp ‘ 𝑃 ) |
64 |
51 28 63
|
lsslss |
⊢ ( ( 𝑆 ∈ LMod ∧ ( Base ‘ 𝑃 ) ∈ ( LSubSp ‘ 𝑆 ) ) → ( ( 𝐴 ‘ ran 𝑉 ) ∈ ( LSubSp ‘ 𝑃 ) ↔ ( ( 𝐴 ‘ ran 𝑉 ) ∈ ( LSubSp ‘ 𝑆 ) ∧ ( 𝐴 ‘ ran 𝑉 ) ⊆ ( Base ‘ 𝑃 ) ) ) ) |
65 |
62 27 64
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐴 ‘ ran 𝑉 ) ∈ ( LSubSp ‘ 𝑃 ) ↔ ( ( 𝐴 ‘ ran 𝑉 ) ∈ ( LSubSp ‘ 𝑆 ) ∧ ( 𝐴 ‘ ran 𝑉 ) ⊆ ( Base ‘ 𝑃 ) ) ) ) |
66 |
61 31 65
|
mpbir2and |
⊢ ( 𝜑 → ( 𝐴 ‘ ran 𝑉 ) ∈ ( LSubSp ‘ 𝑃 ) ) |
67 |
66
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( 𝐴 ‘ ran 𝑉 ) ∈ ( LSubSp ‘ 𝑃 ) ) |
68 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
69 |
1 68 8 32 38
|
mplelf |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) → 𝑥 : { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) ) |
70 |
69
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( 𝑥 ‘ 𝑘 ) ∈ ( Base ‘ 𝑅 ) ) |
71 |
1 35 37
|
mplsca |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
72 |
71
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
73 |
72
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
74 |
70 73
|
eleqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( 𝑥 ‘ 𝑘 ) ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
75 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → 𝐼 ∈ 𝑊 ) |
76 |
|
eqid |
⊢ ( mulGrp ‘ 𝑃 ) = ( mulGrp ‘ 𝑃 ) |
77 |
|
eqid |
⊢ ( .g ‘ ( mulGrp ‘ 𝑃 ) ) = ( .g ‘ ( mulGrp ‘ 𝑃 ) ) |
78 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → 𝑅 ∈ CRing ) |
79 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) |
80 |
1 32 33 34 75 76 77 3 78 79
|
mplcoe2 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) = ( ( mulGrp ‘ 𝑃 ) Σg ( 𝑧 ∈ 𝐼 ↦ ( ( 𝑘 ‘ 𝑧 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( 𝑉 ‘ 𝑧 ) ) ) ) ) |
81 |
|
eqid |
⊢ ( 1r ‘ 𝑃 ) = ( 1r ‘ 𝑃 ) |
82 |
76 81
|
ringidval |
⊢ ( 1r ‘ 𝑃 ) = ( 0g ‘ ( mulGrp ‘ 𝑃 ) ) |
83 |
1
|
mplcrng |
⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝑅 ∈ CRing ) → 𝑃 ∈ CRing ) |
84 |
5 6 83
|
syl2anc |
⊢ ( 𝜑 → 𝑃 ∈ CRing ) |
85 |
76
|
crngmgp |
⊢ ( 𝑃 ∈ CRing → ( mulGrp ‘ 𝑃 ) ∈ CMnd ) |
86 |
84 85
|
syl |
⊢ ( 𝜑 → ( mulGrp ‘ 𝑃 ) ∈ CMnd ) |
87 |
86
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( mulGrp ‘ 𝑃 ) ∈ CMnd ) |
88 |
54
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( 𝐴 ‘ ran 𝑉 ) ∈ ( SubRing ‘ 𝑃 ) ) |
89 |
76
|
subrgsubm |
⊢ ( ( 𝐴 ‘ ran 𝑉 ) ∈ ( SubRing ‘ 𝑃 ) → ( 𝐴 ‘ ran 𝑉 ) ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑃 ) ) ) |
90 |
88 89
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( 𝐴 ‘ ran 𝑉 ) ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑃 ) ) ) |
91 |
|
simplll |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑧 ∈ 𝐼 ) → 𝜑 ) |
92 |
32
|
psrbag |
⊢ ( 𝐼 ∈ 𝑊 → ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↔ ( 𝑘 : 𝐼 ⟶ ℕ0 ∧ ( ◡ 𝑘 “ ℕ ) ∈ Fin ) ) ) |
93 |
35 92
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) → ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↔ ( 𝑘 : 𝐼 ⟶ ℕ0 ∧ ( ◡ 𝑘 “ ℕ ) ∈ Fin ) ) ) |
94 |
93
|
biimpa |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( 𝑘 : 𝐼 ⟶ ℕ0 ∧ ( ◡ 𝑘 “ ℕ ) ∈ Fin ) ) |
95 |
94
|
simpld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → 𝑘 : 𝐼 ⟶ ℕ0 ) |
96 |
95
|
ffvelcdmda |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑧 ∈ 𝐼 ) → ( 𝑘 ‘ 𝑧 ) ∈ ℕ0 ) |
97 |
4 9
|
aspssid |
⊢ ( ( 𝑆 ∈ AssAlg ∧ ran 𝑉 ⊆ ( Base ‘ 𝑆 ) ) → ran 𝑉 ⊆ ( 𝐴 ‘ ran 𝑉 ) ) |
98 |
7 48 97
|
syl2anc |
⊢ ( 𝜑 → ran 𝑉 ⊆ ( 𝐴 ‘ ran 𝑉 ) ) |
99 |
98
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑧 ∈ 𝐼 ) → ran 𝑉 ⊆ ( 𝐴 ‘ ran 𝑉 ) ) |
100 |
15
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → 𝑉 Fn 𝐼 ) |
101 |
|
fnfvelrn |
⊢ ( ( 𝑉 Fn 𝐼 ∧ 𝑧 ∈ 𝐼 ) → ( 𝑉 ‘ 𝑧 ) ∈ ran 𝑉 ) |
102 |
100 101
|
sylan |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑧 ∈ 𝐼 ) → ( 𝑉 ‘ 𝑧 ) ∈ ran 𝑉 ) |
103 |
99 102
|
sseldd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑧 ∈ 𝐼 ) → ( 𝑉 ‘ 𝑧 ) ∈ ( 𝐴 ‘ ran 𝑉 ) ) |
104 |
76 8
|
mgpbas |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ ( mulGrp ‘ 𝑃 ) ) |
105 |
|
eqid |
⊢ ( .r ‘ 𝑃 ) = ( .r ‘ 𝑃 ) |
106 |
76 105
|
mgpplusg |
⊢ ( .r ‘ 𝑃 ) = ( +g ‘ ( mulGrp ‘ 𝑃 ) ) |
107 |
105
|
subrgmcl |
⊢ ( ( ( 𝐴 ‘ ran 𝑉 ) ∈ ( SubRing ‘ 𝑃 ) ∧ 𝑢 ∈ ( 𝐴 ‘ ran 𝑉 ) ∧ 𝑣 ∈ ( 𝐴 ‘ ran 𝑉 ) ) → ( 𝑢 ( .r ‘ 𝑃 ) 𝑣 ) ∈ ( 𝐴 ‘ ran 𝑉 ) ) |
108 |
54 107
|
syl3an1 |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝐴 ‘ ran 𝑉 ) ∧ 𝑣 ∈ ( 𝐴 ‘ ran 𝑉 ) ) → ( 𝑢 ( .r ‘ 𝑃 ) 𝑣 ) ∈ ( 𝐴 ‘ ran 𝑉 ) ) |
109 |
81
|
subrg1cl |
⊢ ( ( 𝐴 ‘ ran 𝑉 ) ∈ ( SubRing ‘ 𝑃 ) → ( 1r ‘ 𝑃 ) ∈ ( 𝐴 ‘ ran 𝑉 ) ) |
110 |
54 109
|
syl |
⊢ ( 𝜑 → ( 1r ‘ 𝑃 ) ∈ ( 𝐴 ‘ ran 𝑉 ) ) |
111 |
104 77 106 86 31 108 82 110
|
mulgnn0subcl |
⊢ ( ( 𝜑 ∧ ( 𝑘 ‘ 𝑧 ) ∈ ℕ0 ∧ ( 𝑉 ‘ 𝑧 ) ∈ ( 𝐴 ‘ ran 𝑉 ) ) → ( ( 𝑘 ‘ 𝑧 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( 𝑉 ‘ 𝑧 ) ) ∈ ( 𝐴 ‘ ran 𝑉 ) ) |
112 |
91 96 103 111
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑧 ∈ 𝐼 ) → ( ( 𝑘 ‘ 𝑧 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( 𝑉 ‘ 𝑧 ) ) ∈ ( 𝐴 ‘ ran 𝑉 ) ) |
113 |
112
|
fmpttd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( 𝑧 ∈ 𝐼 ↦ ( ( 𝑘 ‘ 𝑧 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( 𝑉 ‘ 𝑧 ) ) ) : 𝐼 ⟶ ( 𝐴 ‘ ran 𝑉 ) ) |
114 |
5
|
mptexd |
⊢ ( 𝜑 → ( 𝑧 ∈ 𝐼 ↦ ( ( 𝑘 ‘ 𝑧 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( 𝑉 ‘ 𝑧 ) ) ) ∈ V ) |
115 |
114
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( 𝑧 ∈ 𝐼 ↦ ( ( 𝑘 ‘ 𝑧 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( 𝑉 ‘ 𝑧 ) ) ) ∈ V ) |
116 |
|
funmpt |
⊢ Fun ( 𝑧 ∈ 𝐼 ↦ ( ( 𝑘 ‘ 𝑧 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( 𝑉 ‘ 𝑧 ) ) ) |
117 |
116
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → Fun ( 𝑧 ∈ 𝐼 ↦ ( ( 𝑘 ‘ 𝑧 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( 𝑉 ‘ 𝑧 ) ) ) ) |
118 |
|
fvexd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( 1r ‘ 𝑃 ) ∈ V ) |
119 |
94
|
simprd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( ◡ 𝑘 “ ℕ ) ∈ Fin ) |
120 |
|
elrabi |
⊢ ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } → 𝑘 ∈ ( ℕ0 ↑m 𝐼 ) ) |
121 |
|
elmapi |
⊢ ( 𝑘 ∈ ( ℕ0 ↑m 𝐼 ) → 𝑘 : 𝐼 ⟶ ℕ0 ) |
122 |
121
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ ( ℕ0 ↑m 𝐼 ) ) → 𝑘 : 𝐼 ⟶ ℕ0 ) |
123 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ ( ℕ0 ↑m 𝐼 ) ) → 𝐼 ∈ 𝑊 ) |
124 |
|
fcdmnn0supp |
⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝑘 : 𝐼 ⟶ ℕ0 ) → ( 𝑘 supp 0 ) = ( ◡ 𝑘 “ ℕ ) ) |
125 |
123 122 124
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ ( ℕ0 ↑m 𝐼 ) ) → ( 𝑘 supp 0 ) = ( ◡ 𝑘 “ ℕ ) ) |
126 |
|
eqimss |
⊢ ( ( 𝑘 supp 0 ) = ( ◡ 𝑘 “ ℕ ) → ( 𝑘 supp 0 ) ⊆ ( ◡ 𝑘 “ ℕ ) ) |
127 |
125 126
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ ( ℕ0 ↑m 𝐼 ) ) → ( 𝑘 supp 0 ) ⊆ ( ◡ 𝑘 “ ℕ ) ) |
128 |
|
c0ex |
⊢ 0 ∈ V |
129 |
128
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ ( ℕ0 ↑m 𝐼 ) ) → 0 ∈ V ) |
130 |
122 127 123 129
|
suppssr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ ( ℕ0 ↑m 𝐼 ) ) ∧ 𝑧 ∈ ( 𝐼 ∖ ( ◡ 𝑘 “ ℕ ) ) ) → ( 𝑘 ‘ 𝑧 ) = 0 ) |
131 |
120 130
|
sylanl2 |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑧 ∈ ( 𝐼 ∖ ( ◡ 𝑘 “ ℕ ) ) ) → ( 𝑘 ‘ 𝑧 ) = 0 ) |
132 |
131
|
oveq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑧 ∈ ( 𝐼 ∖ ( ◡ 𝑘 “ ℕ ) ) ) → ( ( 𝑘 ‘ 𝑧 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( 𝑉 ‘ 𝑧 ) ) = ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( 𝑉 ‘ 𝑧 ) ) ) |
133 |
5
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑧 ∈ ( 𝐼 ∖ ( ◡ 𝑘 “ ℕ ) ) ) → 𝐼 ∈ 𝑊 ) |
134 |
13
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑧 ∈ ( 𝐼 ∖ ( ◡ 𝑘 “ ℕ ) ) ) → 𝑅 ∈ Ring ) |
135 |
|
eldifi |
⊢ ( 𝑧 ∈ ( 𝐼 ∖ ( ◡ 𝑘 “ ℕ ) ) → 𝑧 ∈ 𝐼 ) |
136 |
135
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑧 ∈ ( 𝐼 ∖ ( ◡ 𝑘 “ ℕ ) ) ) → 𝑧 ∈ 𝐼 ) |
137 |
1 3 8 133 134 136
|
mvrcl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑧 ∈ ( 𝐼 ∖ ( ◡ 𝑘 “ ℕ ) ) ) → ( 𝑉 ‘ 𝑧 ) ∈ ( Base ‘ 𝑃 ) ) |
138 |
104 82 77
|
mulg0 |
⊢ ( ( 𝑉 ‘ 𝑧 ) ∈ ( Base ‘ 𝑃 ) → ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( 𝑉 ‘ 𝑧 ) ) = ( 1r ‘ 𝑃 ) ) |
139 |
137 138
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑧 ∈ ( 𝐼 ∖ ( ◡ 𝑘 “ ℕ ) ) ) → ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( 𝑉 ‘ 𝑧 ) ) = ( 1r ‘ 𝑃 ) ) |
140 |
132 139
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑧 ∈ ( 𝐼 ∖ ( ◡ 𝑘 “ ℕ ) ) ) → ( ( 𝑘 ‘ 𝑧 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( 𝑉 ‘ 𝑧 ) ) = ( 1r ‘ 𝑃 ) ) |
141 |
140 75
|
suppss2 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( ( 𝑧 ∈ 𝐼 ↦ ( ( 𝑘 ‘ 𝑧 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( 𝑉 ‘ 𝑧 ) ) ) supp ( 1r ‘ 𝑃 ) ) ⊆ ( ◡ 𝑘 “ ℕ ) ) |
142 |
|
suppssfifsupp |
⊢ ( ( ( ( 𝑧 ∈ 𝐼 ↦ ( ( 𝑘 ‘ 𝑧 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( 𝑉 ‘ 𝑧 ) ) ) ∈ V ∧ Fun ( 𝑧 ∈ 𝐼 ↦ ( ( 𝑘 ‘ 𝑧 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( 𝑉 ‘ 𝑧 ) ) ) ∧ ( 1r ‘ 𝑃 ) ∈ V ) ∧ ( ( ◡ 𝑘 “ ℕ ) ∈ Fin ∧ ( ( 𝑧 ∈ 𝐼 ↦ ( ( 𝑘 ‘ 𝑧 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( 𝑉 ‘ 𝑧 ) ) ) supp ( 1r ‘ 𝑃 ) ) ⊆ ( ◡ 𝑘 “ ℕ ) ) ) → ( 𝑧 ∈ 𝐼 ↦ ( ( 𝑘 ‘ 𝑧 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( 𝑉 ‘ 𝑧 ) ) ) finSupp ( 1r ‘ 𝑃 ) ) |
143 |
115 117 118 119 141 142
|
syl32anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( 𝑧 ∈ 𝐼 ↦ ( ( 𝑘 ‘ 𝑧 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( 𝑉 ‘ 𝑧 ) ) ) finSupp ( 1r ‘ 𝑃 ) ) |
144 |
82 87 75 90 113 143
|
gsumsubmcl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( ( mulGrp ‘ 𝑃 ) Σg ( 𝑧 ∈ 𝐼 ↦ ( ( 𝑘 ‘ 𝑧 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( 𝑉 ‘ 𝑧 ) ) ) ) ∈ ( 𝐴 ‘ ran 𝑉 ) ) |
145 |
80 144
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ∈ ( 𝐴 ‘ ran 𝑉 ) ) |
146 |
|
eqid |
⊢ ( Scalar ‘ 𝑃 ) = ( Scalar ‘ 𝑃 ) |
147 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑃 ) ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) |
148 |
146 36 147 63
|
lssvscl |
⊢ ( ( ( 𝑃 ∈ LMod ∧ ( 𝐴 ‘ ran 𝑉 ) ∈ ( LSubSp ‘ 𝑃 ) ) ∧ ( ( 𝑥 ‘ 𝑘 ) ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ∈ ( 𝐴 ‘ ran 𝑉 ) ) ) → ( ( 𝑥 ‘ 𝑘 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) ∈ ( 𝐴 ‘ ran 𝑉 ) ) |
149 |
59 67 74 145 148
|
syl22anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( ( 𝑥 ‘ 𝑘 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) ∈ ( 𝐴 ‘ ran 𝑉 ) ) |
150 |
149
|
fmpttd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) → ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ ( ( 𝑥 ‘ 𝑘 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) ) : { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ⟶ ( 𝐴 ‘ ran 𝑉 ) ) |
151 |
45
|
mptrabex |
⊢ ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ ( ( 𝑥 ‘ 𝑘 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) ) ∈ V |
152 |
|
funmpt |
⊢ Fun ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ ( ( 𝑥 ‘ 𝑘 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) ) |
153 |
|
fvex |
⊢ ( 0g ‘ 𝑃 ) ∈ V |
154 |
151 152 153
|
3pm3.2i |
⊢ ( ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ ( ( 𝑥 ‘ 𝑘 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) ) ∈ V ∧ Fun ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ ( ( 𝑥 ‘ 𝑘 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) ) ∧ ( 0g ‘ 𝑃 ) ∈ V ) |
155 |
154
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) → ( ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ ( ( 𝑥 ‘ 𝑘 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) ) ∈ V ∧ Fun ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ ( ( 𝑥 ‘ 𝑘 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) ) ∧ ( 0g ‘ 𝑃 ) ∈ V ) ) |
156 |
1 2 9 33 8
|
mplelbas |
⊢ ( 𝑥 ∈ ( Base ‘ 𝑃 ) ↔ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 finSupp ( 0g ‘ 𝑅 ) ) ) |
157 |
156
|
simprbi |
⊢ ( 𝑥 ∈ ( Base ‘ 𝑃 ) → 𝑥 finSupp ( 0g ‘ 𝑅 ) ) |
158 |
157
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) → 𝑥 finSupp ( 0g ‘ 𝑅 ) ) |
159 |
158
|
fsuppimpd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) → ( 𝑥 supp ( 0g ‘ 𝑅 ) ) ∈ Fin ) |
160 |
|
ssidd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) → ( 𝑥 supp ( 0g ‘ 𝑅 ) ) ⊆ ( 𝑥 supp ( 0g ‘ 𝑅 ) ) ) |
161 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) → ( 0g ‘ 𝑅 ) ∈ V ) |
162 |
69 160 47 161
|
suppssr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∖ ( 𝑥 supp ( 0g ‘ 𝑅 ) ) ) ) → ( 𝑥 ‘ 𝑘 ) = ( 0g ‘ 𝑅 ) ) |
163 |
71
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) → ( 0g ‘ 𝑅 ) = ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ) |
164 |
163
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∖ ( 𝑥 supp ( 0g ‘ 𝑅 ) ) ) ) → ( 0g ‘ 𝑅 ) = ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ) |
165 |
162 164
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∖ ( 𝑥 supp ( 0g ‘ 𝑅 ) ) ) ) → ( 𝑥 ‘ 𝑘 ) = ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ) |
166 |
165
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∖ ( 𝑥 supp ( 0g ‘ 𝑅 ) ) ) ) → ( ( 𝑥 ‘ 𝑘 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) = ( ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) ) |
167 |
|
eldifi |
⊢ ( 𝑘 ∈ ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∖ ( 𝑥 supp ( 0g ‘ 𝑅 ) ) ) → 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) |
168 |
13
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → 𝑅 ∈ Ring ) |
169 |
1 8 33 34 32 75 168 79
|
mplmon |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ∈ ( Base ‘ 𝑃 ) ) |
170 |
|
eqid |
⊢ ( 0g ‘ ( Scalar ‘ 𝑃 ) ) = ( 0g ‘ ( Scalar ‘ 𝑃 ) ) |
171 |
8 146 36 170 40
|
lmod0vs |
⊢ ( ( 𝑃 ∈ LMod ∧ ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ∈ ( Base ‘ 𝑃 ) ) → ( ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) = ( 0g ‘ 𝑃 ) ) |
172 |
59 169 171
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) = ( 0g ‘ 𝑃 ) ) |
173 |
167 172
|
sylan2 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∖ ( 𝑥 supp ( 0g ‘ 𝑅 ) ) ) ) → ( ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) = ( 0g ‘ 𝑃 ) ) |
174 |
166 173
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∖ ( 𝑥 supp ( 0g ‘ 𝑅 ) ) ) ) → ( ( 𝑥 ‘ 𝑘 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) = ( 0g ‘ 𝑃 ) ) |
175 |
174 47
|
suppss2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) → ( ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ ( ( 𝑥 ‘ 𝑘 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) ) supp ( 0g ‘ 𝑃 ) ) ⊆ ( 𝑥 supp ( 0g ‘ 𝑅 ) ) ) |
176 |
|
suppssfifsupp |
⊢ ( ( ( ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ ( ( 𝑥 ‘ 𝑘 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) ) ∈ V ∧ Fun ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ ( ( 𝑥 ‘ 𝑘 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) ) ∧ ( 0g ‘ 𝑃 ) ∈ V ) ∧ ( ( 𝑥 supp ( 0g ‘ 𝑅 ) ) ∈ Fin ∧ ( ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ ( ( 𝑥 ‘ 𝑘 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) ) supp ( 0g ‘ 𝑃 ) ) ⊆ ( 𝑥 supp ( 0g ‘ 𝑅 ) ) ) ) → ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ ( ( 𝑥 ‘ 𝑘 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) ) finSupp ( 0g ‘ 𝑃 ) ) |
177 |
155 159 175 176
|
syl12anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) → ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ ( ( 𝑥 ‘ 𝑘 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) ) finSupp ( 0g ‘ 𝑃 ) ) |
178 |
40 44 47 57 150 177
|
gsumsubgcl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) → ( 𝑃 Σg ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ ( ( 𝑥 ‘ 𝑘 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) ) ) ∈ ( 𝐴 ‘ ran 𝑉 ) ) |
179 |
39 178
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) → 𝑥 ∈ ( 𝐴 ‘ ran 𝑉 ) ) |
180 |
31 179
|
eqelssd |
⊢ ( 𝜑 → ( 𝐴 ‘ ran 𝑉 ) = ( Base ‘ 𝑃 ) ) |