Metamath Proof Explorer


Theorem mplbas2

Description: An alternative expression for the set of polynomials, as the smallest subalgebra of the set of power series that contains all the variable generators. (Contributed by Mario Carneiro, 10-Jan-2015)

Ref Expression
Hypotheses mplbas2.p 𝑃 = ( 𝐼 mPoly 𝑅 )
mplbas2.s 𝑆 = ( 𝐼 mPwSer 𝑅 )
mplbas2.v 𝑉 = ( 𝐼 mVar 𝑅 )
mplbas2.a 𝐴 = ( AlgSpan ‘ 𝑆 )
mplbas2.i ( 𝜑𝐼𝑊 )
mplbas2.r ( 𝜑𝑅 ∈ CRing )
Assertion mplbas2 ( 𝜑 → ( 𝐴 ‘ ran 𝑉 ) = ( Base ‘ 𝑃 ) )

Proof

Step Hyp Ref Expression
1 mplbas2.p 𝑃 = ( 𝐼 mPoly 𝑅 )
2 mplbas2.s 𝑆 = ( 𝐼 mPwSer 𝑅 )
3 mplbas2.v 𝑉 = ( 𝐼 mVar 𝑅 )
4 mplbas2.a 𝐴 = ( AlgSpan ‘ 𝑆 )
5 mplbas2.i ( 𝜑𝐼𝑊 )
6 mplbas2.r ( 𝜑𝑅 ∈ CRing )
7 2 5 6 psrassa ( 𝜑𝑆 ∈ AssAlg )
8 eqid ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 )
9 eqid ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 )
10 1 2 8 9 mplbasss ( Base ‘ 𝑃 ) ⊆ ( Base ‘ 𝑆 )
11 10 a1i ( 𝜑 → ( Base ‘ 𝑃 ) ⊆ ( Base ‘ 𝑆 ) )
12 crngring ( 𝑅 ∈ CRing → 𝑅 ∈ Ring )
13 6 12 syl ( 𝜑𝑅 ∈ Ring )
14 2 3 9 5 13 mvrf ( 𝜑𝑉 : 𝐼 ⟶ ( Base ‘ 𝑆 ) )
15 14 ffnd ( 𝜑𝑉 Fn 𝐼 )
16 5 adantr ( ( 𝜑𝑥𝐼 ) → 𝐼𝑊 )
17 13 adantr ( ( 𝜑𝑥𝐼 ) → 𝑅 ∈ Ring )
18 simpr ( ( 𝜑𝑥𝐼 ) → 𝑥𝐼 )
19 1 3 8 16 17 18 mvrcl ( ( 𝜑𝑥𝐼 ) → ( 𝑉𝑥 ) ∈ ( Base ‘ 𝑃 ) )
20 19 ralrimiva ( 𝜑 → ∀ 𝑥𝐼 ( 𝑉𝑥 ) ∈ ( Base ‘ 𝑃 ) )
21 ffnfv ( 𝑉 : 𝐼 ⟶ ( Base ‘ 𝑃 ) ↔ ( 𝑉 Fn 𝐼 ∧ ∀ 𝑥𝐼 ( 𝑉𝑥 ) ∈ ( Base ‘ 𝑃 ) ) )
22 15 20 21 sylanbrc ( 𝜑𝑉 : 𝐼 ⟶ ( Base ‘ 𝑃 ) )
23 22 frnd ( 𝜑 → ran 𝑉 ⊆ ( Base ‘ 𝑃 ) )
24 4 9 aspss ( ( 𝑆 ∈ AssAlg ∧ ( Base ‘ 𝑃 ) ⊆ ( Base ‘ 𝑆 ) ∧ ran 𝑉 ⊆ ( Base ‘ 𝑃 ) ) → ( 𝐴 ‘ ran 𝑉 ) ⊆ ( 𝐴 ‘ ( Base ‘ 𝑃 ) ) )
25 7 11 23 24 syl3anc ( 𝜑 → ( 𝐴 ‘ ran 𝑉 ) ⊆ ( 𝐴 ‘ ( Base ‘ 𝑃 ) ) )
26 2 1 8 5 13 mplsubrg ( 𝜑 → ( Base ‘ 𝑃 ) ∈ ( SubRing ‘ 𝑆 ) )
27 2 1 8 5 13 mpllss ( 𝜑 → ( Base ‘ 𝑃 ) ∈ ( LSubSp ‘ 𝑆 ) )
28 eqid ( LSubSp ‘ 𝑆 ) = ( LSubSp ‘ 𝑆 )
29 4 9 28 aspid ( ( 𝑆 ∈ AssAlg ∧ ( Base ‘ 𝑃 ) ∈ ( SubRing ‘ 𝑆 ) ∧ ( Base ‘ 𝑃 ) ∈ ( LSubSp ‘ 𝑆 ) ) → ( 𝐴 ‘ ( Base ‘ 𝑃 ) ) = ( Base ‘ 𝑃 ) )
30 7 26 27 29 syl3anc ( 𝜑 → ( 𝐴 ‘ ( Base ‘ 𝑃 ) ) = ( Base ‘ 𝑃 ) )
31 25 30 sseqtrd ( 𝜑 → ( 𝐴 ‘ ran 𝑉 ) ⊆ ( Base ‘ 𝑃 ) )
32 eqid { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } = { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin }
33 eqid ( 0g𝑅 ) = ( 0g𝑅 )
34 eqid ( 1r𝑅 ) = ( 1r𝑅 )
35 5 adantr ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑃 ) ) → 𝐼𝑊 )
36 eqid ( ·𝑠𝑃 ) = ( ·𝑠𝑃 )
37 13 adantr ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑃 ) ) → 𝑅 ∈ Ring )
38 simpr ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑃 ) ) → 𝑥 ∈ ( Base ‘ 𝑃 ) )
39 1 32 33 34 35 8 36 37 38 mplcoe1 ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑃 ) ) → 𝑥 = ( 𝑃 Σg ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ↦ ( ( 𝑥𝑘 ) ( ·𝑠𝑃 ) ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r𝑅 ) , ( 0g𝑅 ) ) ) ) ) ) )
40 eqid ( 0g𝑃 ) = ( 0g𝑃 )
41 1 mplring ( ( 𝐼𝑊𝑅 ∈ Ring ) → 𝑃 ∈ Ring )
42 5 13 41 syl2anc ( 𝜑𝑃 ∈ Ring )
43 ringabl ( 𝑃 ∈ Ring → 𝑃 ∈ Abel )
44 42 43 syl ( 𝜑𝑃 ∈ Abel )
45 44 adantr ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑃 ) ) → 𝑃 ∈ Abel )
46 ovex ( ℕ0m 𝐼 ) ∈ V
47 46 rabex { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ∈ V
48 47 a1i ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑃 ) ) → { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ∈ V )
49 14 frnd ( 𝜑 → ran 𝑉 ⊆ ( Base ‘ 𝑆 ) )
50 4 9 aspsubrg ( ( 𝑆 ∈ AssAlg ∧ ran 𝑉 ⊆ ( Base ‘ 𝑆 ) ) → ( 𝐴 ‘ ran 𝑉 ) ∈ ( SubRing ‘ 𝑆 ) )
51 7 49 50 syl2anc ( 𝜑 → ( 𝐴 ‘ ran 𝑉 ) ∈ ( SubRing ‘ 𝑆 ) )
52 1 2 8 mplval2 𝑃 = ( 𝑆s ( Base ‘ 𝑃 ) )
53 52 subsubrg ( ( Base ‘ 𝑃 ) ∈ ( SubRing ‘ 𝑆 ) → ( ( 𝐴 ‘ ran 𝑉 ) ∈ ( SubRing ‘ 𝑃 ) ↔ ( ( 𝐴 ‘ ran 𝑉 ) ∈ ( SubRing ‘ 𝑆 ) ∧ ( 𝐴 ‘ ran 𝑉 ) ⊆ ( Base ‘ 𝑃 ) ) ) )
54 26 53 syl ( 𝜑 → ( ( 𝐴 ‘ ran 𝑉 ) ∈ ( SubRing ‘ 𝑃 ) ↔ ( ( 𝐴 ‘ ran 𝑉 ) ∈ ( SubRing ‘ 𝑆 ) ∧ ( 𝐴 ‘ ran 𝑉 ) ⊆ ( Base ‘ 𝑃 ) ) ) )
55 51 31 54 mpbir2and ( 𝜑 → ( 𝐴 ‘ ran 𝑉 ) ∈ ( SubRing ‘ 𝑃 ) )
56 subrgsubg ( ( 𝐴 ‘ ran 𝑉 ) ∈ ( SubRing ‘ 𝑃 ) → ( 𝐴 ‘ ran 𝑉 ) ∈ ( SubGrp ‘ 𝑃 ) )
57 55 56 syl ( 𝜑 → ( 𝐴 ‘ ran 𝑉 ) ∈ ( SubGrp ‘ 𝑃 ) )
58 57 adantr ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑃 ) ) → ( 𝐴 ‘ ran 𝑉 ) ∈ ( SubGrp ‘ 𝑃 ) )
59 1 mpllmod ( ( 𝐼𝑊𝑅 ∈ Ring ) → 𝑃 ∈ LMod )
60 5 13 59 syl2anc ( 𝜑𝑃 ∈ LMod )
61 60 ad2antrr ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ) → 𝑃 ∈ LMod )
62 4 9 28 asplss ( ( 𝑆 ∈ AssAlg ∧ ran 𝑉 ⊆ ( Base ‘ 𝑆 ) ) → ( 𝐴 ‘ ran 𝑉 ) ∈ ( LSubSp ‘ 𝑆 ) )
63 7 49 62 syl2anc ( 𝜑 → ( 𝐴 ‘ ran 𝑉 ) ∈ ( LSubSp ‘ 𝑆 ) )
64 2 5 13 psrlmod ( 𝜑𝑆 ∈ LMod )
65 eqid ( LSubSp ‘ 𝑃 ) = ( LSubSp ‘ 𝑃 )
66 52 28 65 lsslss ( ( 𝑆 ∈ LMod ∧ ( Base ‘ 𝑃 ) ∈ ( LSubSp ‘ 𝑆 ) ) → ( ( 𝐴 ‘ ran 𝑉 ) ∈ ( LSubSp ‘ 𝑃 ) ↔ ( ( 𝐴 ‘ ran 𝑉 ) ∈ ( LSubSp ‘ 𝑆 ) ∧ ( 𝐴 ‘ ran 𝑉 ) ⊆ ( Base ‘ 𝑃 ) ) ) )
67 64 27 66 syl2anc ( 𝜑 → ( ( 𝐴 ‘ ran 𝑉 ) ∈ ( LSubSp ‘ 𝑃 ) ↔ ( ( 𝐴 ‘ ran 𝑉 ) ∈ ( LSubSp ‘ 𝑆 ) ∧ ( 𝐴 ‘ ran 𝑉 ) ⊆ ( Base ‘ 𝑃 ) ) ) )
68 63 31 67 mpbir2and ( 𝜑 → ( 𝐴 ‘ ran 𝑉 ) ∈ ( LSubSp ‘ 𝑃 ) )
69 68 ad2antrr ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ) → ( 𝐴 ‘ ran 𝑉 ) ∈ ( LSubSp ‘ 𝑃 ) )
70 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
71 1 70 8 32 38 mplelf ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑃 ) ) → 𝑥 : { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) )
72 71 ffvelrnda ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ) → ( 𝑥𝑘 ) ∈ ( Base ‘ 𝑅 ) )
73 1 35 37 mplsca ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑃 ) ) → 𝑅 = ( Scalar ‘ 𝑃 ) )
74 73 adantr ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ) → 𝑅 = ( Scalar ‘ 𝑃 ) )
75 74 fveq2d ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ) → ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) )
76 72 75 eleqtrd ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ) → ( 𝑥𝑘 ) ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) )
77 5 ad2antrr ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ) → 𝐼𝑊 )
78 eqid ( mulGrp ‘ 𝑃 ) = ( mulGrp ‘ 𝑃 )
79 eqid ( .g ‘ ( mulGrp ‘ 𝑃 ) ) = ( .g ‘ ( mulGrp ‘ 𝑃 ) )
80 6 ad2antrr ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ) → 𝑅 ∈ CRing )
81 simpr ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ) → 𝑘 ∈ { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } )
82 1 32 33 34 77 78 79 3 80 81 mplcoe2 ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ) → ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r𝑅 ) , ( 0g𝑅 ) ) ) = ( ( mulGrp ‘ 𝑃 ) Σg ( 𝑧𝐼 ↦ ( ( 𝑘𝑧 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( 𝑉𝑧 ) ) ) ) )
83 eqid ( 1r𝑃 ) = ( 1r𝑃 )
84 78 83 ringidval ( 1r𝑃 ) = ( 0g ‘ ( mulGrp ‘ 𝑃 ) )
85 1 mplcrng ( ( 𝐼𝑊𝑅 ∈ CRing ) → 𝑃 ∈ CRing )
86 5 6 85 syl2anc ( 𝜑𝑃 ∈ CRing )
87 78 crngmgp ( 𝑃 ∈ CRing → ( mulGrp ‘ 𝑃 ) ∈ CMnd )
88 86 87 syl ( 𝜑 → ( mulGrp ‘ 𝑃 ) ∈ CMnd )
89 88 ad2antrr ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ) → ( mulGrp ‘ 𝑃 ) ∈ CMnd )
90 55 ad2antrr ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ) → ( 𝐴 ‘ ran 𝑉 ) ∈ ( SubRing ‘ 𝑃 ) )
91 78 subrgsubm ( ( 𝐴 ‘ ran 𝑉 ) ∈ ( SubRing ‘ 𝑃 ) → ( 𝐴 ‘ ran 𝑉 ) ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑃 ) ) )
92 90 91 syl ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ) → ( 𝐴 ‘ ran 𝑉 ) ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑃 ) ) )
93 simplll ( ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑧𝐼 ) → 𝜑 )
94 32 psrbag ( 𝐼𝑊 → ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ↔ ( 𝑘 : 𝐼 ⟶ ℕ0 ∧ ( 𝑘 “ ℕ ) ∈ Fin ) ) )
95 35 94 syl ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑃 ) ) → ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ↔ ( 𝑘 : 𝐼 ⟶ ℕ0 ∧ ( 𝑘 “ ℕ ) ∈ Fin ) ) )
96 95 biimpa ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ) → ( 𝑘 : 𝐼 ⟶ ℕ0 ∧ ( 𝑘 “ ℕ ) ∈ Fin ) )
97 96 simpld ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ) → 𝑘 : 𝐼 ⟶ ℕ0 )
98 97 ffvelrnda ( ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑧𝐼 ) → ( 𝑘𝑧 ) ∈ ℕ0 )
99 4 9 aspssid ( ( 𝑆 ∈ AssAlg ∧ ran 𝑉 ⊆ ( Base ‘ 𝑆 ) ) → ran 𝑉 ⊆ ( 𝐴 ‘ ran 𝑉 ) )
100 7 49 99 syl2anc ( 𝜑 → ran 𝑉 ⊆ ( 𝐴 ‘ ran 𝑉 ) )
101 100 ad3antrrr ( ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑧𝐼 ) → ran 𝑉 ⊆ ( 𝐴 ‘ ran 𝑉 ) )
102 15 ad2antrr ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ) → 𝑉 Fn 𝐼 )
103 fnfvelrn ( ( 𝑉 Fn 𝐼𝑧𝐼 ) → ( 𝑉𝑧 ) ∈ ran 𝑉 )
104 102 103 sylan ( ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑧𝐼 ) → ( 𝑉𝑧 ) ∈ ran 𝑉 )
105 101 104 sseldd ( ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑧𝐼 ) → ( 𝑉𝑧 ) ∈ ( 𝐴 ‘ ran 𝑉 ) )
106 78 8 mgpbas ( Base ‘ 𝑃 ) = ( Base ‘ ( mulGrp ‘ 𝑃 ) )
107 eqid ( .r𝑃 ) = ( .r𝑃 )
108 78 107 mgpplusg ( .r𝑃 ) = ( +g ‘ ( mulGrp ‘ 𝑃 ) )
109 107 subrgmcl ( ( ( 𝐴 ‘ ran 𝑉 ) ∈ ( SubRing ‘ 𝑃 ) ∧ 𝑢 ∈ ( 𝐴 ‘ ran 𝑉 ) ∧ 𝑣 ∈ ( 𝐴 ‘ ran 𝑉 ) ) → ( 𝑢 ( .r𝑃 ) 𝑣 ) ∈ ( 𝐴 ‘ ran 𝑉 ) )
110 55 109 syl3an1 ( ( 𝜑𝑢 ∈ ( 𝐴 ‘ ran 𝑉 ) ∧ 𝑣 ∈ ( 𝐴 ‘ ran 𝑉 ) ) → ( 𝑢 ( .r𝑃 ) 𝑣 ) ∈ ( 𝐴 ‘ ran 𝑉 ) )
111 83 subrg1cl ( ( 𝐴 ‘ ran 𝑉 ) ∈ ( SubRing ‘ 𝑃 ) → ( 1r𝑃 ) ∈ ( 𝐴 ‘ ran 𝑉 ) )
112 55 111 syl ( 𝜑 → ( 1r𝑃 ) ∈ ( 𝐴 ‘ ran 𝑉 ) )
113 106 79 108 88 31 110 84 112 mulgnn0subcl ( ( 𝜑 ∧ ( 𝑘𝑧 ) ∈ ℕ0 ∧ ( 𝑉𝑧 ) ∈ ( 𝐴 ‘ ran 𝑉 ) ) → ( ( 𝑘𝑧 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( 𝑉𝑧 ) ) ∈ ( 𝐴 ‘ ran 𝑉 ) )
114 93 98 105 113 syl3anc ( ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑧𝐼 ) → ( ( 𝑘𝑧 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( 𝑉𝑧 ) ) ∈ ( 𝐴 ‘ ran 𝑉 ) )
115 114 fmpttd ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ) → ( 𝑧𝐼 ↦ ( ( 𝑘𝑧 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( 𝑉𝑧 ) ) ) : 𝐼 ⟶ ( 𝐴 ‘ ran 𝑉 ) )
116 5 mptexd ( 𝜑 → ( 𝑧𝐼 ↦ ( ( 𝑘𝑧 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( 𝑉𝑧 ) ) ) ∈ V )
117 116 ad2antrr ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ) → ( 𝑧𝐼 ↦ ( ( 𝑘𝑧 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( 𝑉𝑧 ) ) ) ∈ V )
118 funmpt Fun ( 𝑧𝐼 ↦ ( ( 𝑘𝑧 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( 𝑉𝑧 ) ) )
119 118 a1i ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ) → Fun ( 𝑧𝐼 ↦ ( ( 𝑘𝑧 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( 𝑉𝑧 ) ) ) )
120 fvexd ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ) → ( 1r𝑃 ) ∈ V )
121 96 simprd ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ) → ( 𝑘 “ ℕ ) ∈ Fin )
122 elrabi ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } → 𝑘 ∈ ( ℕ0m 𝐼 ) )
123 elmapi ( 𝑘 ∈ ( ℕ0m 𝐼 ) → 𝑘 : 𝐼 ⟶ ℕ0 )
124 123 adantl ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ ( ℕ0m 𝐼 ) ) → 𝑘 : 𝐼 ⟶ ℕ0 )
125 5 ad2antrr ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ ( ℕ0m 𝐼 ) ) → 𝐼𝑊 )
126 frnnn0supp ( ( 𝐼𝑊𝑘 : 𝐼 ⟶ ℕ0 ) → ( 𝑘 supp 0 ) = ( 𝑘 “ ℕ ) )
127 125 124 126 syl2anc ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ ( ℕ0m 𝐼 ) ) → ( 𝑘 supp 0 ) = ( 𝑘 “ ℕ ) )
128 eqimss ( ( 𝑘 supp 0 ) = ( 𝑘 “ ℕ ) → ( 𝑘 supp 0 ) ⊆ ( 𝑘 “ ℕ ) )
129 127 128 syl ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ ( ℕ0m 𝐼 ) ) → ( 𝑘 supp 0 ) ⊆ ( 𝑘 “ ℕ ) )
130 c0ex 0 ∈ V
131 130 a1i ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ ( ℕ0m 𝐼 ) ) → 0 ∈ V )
132 124 129 125 131 suppssr ( ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ ( ℕ0m 𝐼 ) ) ∧ 𝑧 ∈ ( 𝐼 ∖ ( 𝑘 “ ℕ ) ) ) → ( 𝑘𝑧 ) = 0 )
133 122 132 sylanl2 ( ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑧 ∈ ( 𝐼 ∖ ( 𝑘 “ ℕ ) ) ) → ( 𝑘𝑧 ) = 0 )
134 133 oveq1d ( ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑧 ∈ ( 𝐼 ∖ ( 𝑘 “ ℕ ) ) ) → ( ( 𝑘𝑧 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( 𝑉𝑧 ) ) = ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( 𝑉𝑧 ) ) )
135 5 ad3antrrr ( ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑧 ∈ ( 𝐼 ∖ ( 𝑘 “ ℕ ) ) ) → 𝐼𝑊 )
136 13 ad3antrrr ( ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑧 ∈ ( 𝐼 ∖ ( 𝑘 “ ℕ ) ) ) → 𝑅 ∈ Ring )
137 eldifi ( 𝑧 ∈ ( 𝐼 ∖ ( 𝑘 “ ℕ ) ) → 𝑧𝐼 )
138 137 adantl ( ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑧 ∈ ( 𝐼 ∖ ( 𝑘 “ ℕ ) ) ) → 𝑧𝐼 )
139 1 3 8 135 136 138 mvrcl ( ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑧 ∈ ( 𝐼 ∖ ( 𝑘 “ ℕ ) ) ) → ( 𝑉𝑧 ) ∈ ( Base ‘ 𝑃 ) )
140 106 84 79 mulg0 ( ( 𝑉𝑧 ) ∈ ( Base ‘ 𝑃 ) → ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( 𝑉𝑧 ) ) = ( 1r𝑃 ) )
141 139 140 syl ( ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑧 ∈ ( 𝐼 ∖ ( 𝑘 “ ℕ ) ) ) → ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( 𝑉𝑧 ) ) = ( 1r𝑃 ) )
142 134 141 eqtrd ( ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑧 ∈ ( 𝐼 ∖ ( 𝑘 “ ℕ ) ) ) → ( ( 𝑘𝑧 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( 𝑉𝑧 ) ) = ( 1r𝑃 ) )
143 142 77 suppss2 ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ) → ( ( 𝑧𝐼 ↦ ( ( 𝑘𝑧 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( 𝑉𝑧 ) ) ) supp ( 1r𝑃 ) ) ⊆ ( 𝑘 “ ℕ ) )
144 suppssfifsupp ( ( ( ( 𝑧𝐼 ↦ ( ( 𝑘𝑧 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( 𝑉𝑧 ) ) ) ∈ V ∧ Fun ( 𝑧𝐼 ↦ ( ( 𝑘𝑧 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( 𝑉𝑧 ) ) ) ∧ ( 1r𝑃 ) ∈ V ) ∧ ( ( 𝑘 “ ℕ ) ∈ Fin ∧ ( ( 𝑧𝐼 ↦ ( ( 𝑘𝑧 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( 𝑉𝑧 ) ) ) supp ( 1r𝑃 ) ) ⊆ ( 𝑘 “ ℕ ) ) ) → ( 𝑧𝐼 ↦ ( ( 𝑘𝑧 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( 𝑉𝑧 ) ) ) finSupp ( 1r𝑃 ) )
145 117 119 120 121 143 144 syl32anc ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ) → ( 𝑧𝐼 ↦ ( ( 𝑘𝑧 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( 𝑉𝑧 ) ) ) finSupp ( 1r𝑃 ) )
146 84 89 77 92 115 145 gsumsubmcl ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ) → ( ( mulGrp ‘ 𝑃 ) Σg ( 𝑧𝐼 ↦ ( ( 𝑘𝑧 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( 𝑉𝑧 ) ) ) ) ∈ ( 𝐴 ‘ ran 𝑉 ) )
147 82 146 eqeltrd ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ) → ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r𝑅 ) , ( 0g𝑅 ) ) ) ∈ ( 𝐴 ‘ ran 𝑉 ) )
148 eqid ( Scalar ‘ 𝑃 ) = ( Scalar ‘ 𝑃 )
149 eqid ( Base ‘ ( Scalar ‘ 𝑃 ) ) = ( Base ‘ ( Scalar ‘ 𝑃 ) )
150 148 36 149 65 lssvscl ( ( ( 𝑃 ∈ LMod ∧ ( 𝐴 ‘ ran 𝑉 ) ∈ ( LSubSp ‘ 𝑃 ) ) ∧ ( ( 𝑥𝑘 ) ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r𝑅 ) , ( 0g𝑅 ) ) ) ∈ ( 𝐴 ‘ ran 𝑉 ) ) ) → ( ( 𝑥𝑘 ) ( ·𝑠𝑃 ) ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r𝑅 ) , ( 0g𝑅 ) ) ) ) ∈ ( 𝐴 ‘ ran 𝑉 ) )
151 61 69 76 147 150 syl22anc ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ) → ( ( 𝑥𝑘 ) ( ·𝑠𝑃 ) ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r𝑅 ) , ( 0g𝑅 ) ) ) ) ∈ ( 𝐴 ‘ ran 𝑉 ) )
152 151 fmpttd ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑃 ) ) → ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ↦ ( ( 𝑥𝑘 ) ( ·𝑠𝑃 ) ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r𝑅 ) , ( 0g𝑅 ) ) ) ) ) : { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ⟶ ( 𝐴 ‘ ran 𝑉 ) )
153 46 mptrabex ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ↦ ( ( 𝑥𝑘 ) ( ·𝑠𝑃 ) ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r𝑅 ) , ( 0g𝑅 ) ) ) ) ) ∈ V
154 funmpt Fun ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ↦ ( ( 𝑥𝑘 ) ( ·𝑠𝑃 ) ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r𝑅 ) , ( 0g𝑅 ) ) ) ) )
155 fvex ( 0g𝑃 ) ∈ V
156 153 154 155 3pm3.2i ( ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ↦ ( ( 𝑥𝑘 ) ( ·𝑠𝑃 ) ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r𝑅 ) , ( 0g𝑅 ) ) ) ) ) ∈ V ∧ Fun ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ↦ ( ( 𝑥𝑘 ) ( ·𝑠𝑃 ) ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r𝑅 ) , ( 0g𝑅 ) ) ) ) ) ∧ ( 0g𝑃 ) ∈ V )
157 156 a1i ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑃 ) ) → ( ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ↦ ( ( 𝑥𝑘 ) ( ·𝑠𝑃 ) ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r𝑅 ) , ( 0g𝑅 ) ) ) ) ) ∈ V ∧ Fun ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ↦ ( ( 𝑥𝑘 ) ( ·𝑠𝑃 ) ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r𝑅 ) , ( 0g𝑅 ) ) ) ) ) ∧ ( 0g𝑃 ) ∈ V ) )
158 1 2 9 33 8 mplelbas ( 𝑥 ∈ ( Base ‘ 𝑃 ) ↔ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 finSupp ( 0g𝑅 ) ) )
159 158 simprbi ( 𝑥 ∈ ( Base ‘ 𝑃 ) → 𝑥 finSupp ( 0g𝑅 ) )
160 159 adantl ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑃 ) ) → 𝑥 finSupp ( 0g𝑅 ) )
161 160 fsuppimpd ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑃 ) ) → ( 𝑥 supp ( 0g𝑅 ) ) ∈ Fin )
162 ssidd ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑃 ) ) → ( 𝑥 supp ( 0g𝑅 ) ) ⊆ ( 𝑥 supp ( 0g𝑅 ) ) )
163 fvexd ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑃 ) ) → ( 0g𝑅 ) ∈ V )
164 71 162 48 163 suppssr ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ ( { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ∖ ( 𝑥 supp ( 0g𝑅 ) ) ) ) → ( 𝑥𝑘 ) = ( 0g𝑅 ) )
165 73 fveq2d ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑃 ) ) → ( 0g𝑅 ) = ( 0g ‘ ( Scalar ‘ 𝑃 ) ) )
166 165 adantr ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ ( { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ∖ ( 𝑥 supp ( 0g𝑅 ) ) ) ) → ( 0g𝑅 ) = ( 0g ‘ ( Scalar ‘ 𝑃 ) ) )
167 164 166 eqtrd ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ ( { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ∖ ( 𝑥 supp ( 0g𝑅 ) ) ) ) → ( 𝑥𝑘 ) = ( 0g ‘ ( Scalar ‘ 𝑃 ) ) )
168 167 oveq1d ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ ( { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ∖ ( 𝑥 supp ( 0g𝑅 ) ) ) ) → ( ( 𝑥𝑘 ) ( ·𝑠𝑃 ) ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r𝑅 ) , ( 0g𝑅 ) ) ) ) = ( ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ( ·𝑠𝑃 ) ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r𝑅 ) , ( 0g𝑅 ) ) ) ) )
169 eldifi ( 𝑘 ∈ ( { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ∖ ( 𝑥 supp ( 0g𝑅 ) ) ) → 𝑘 ∈ { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } )
170 13 ad2antrr ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ) → 𝑅 ∈ Ring )
171 1 8 33 34 32 77 170 81 mplmon ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ) → ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r𝑅 ) , ( 0g𝑅 ) ) ) ∈ ( Base ‘ 𝑃 ) )
172 eqid ( 0g ‘ ( Scalar ‘ 𝑃 ) ) = ( 0g ‘ ( Scalar ‘ 𝑃 ) )
173 8 148 36 172 40 lmod0vs ( ( 𝑃 ∈ LMod ∧ ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r𝑅 ) , ( 0g𝑅 ) ) ) ∈ ( Base ‘ 𝑃 ) ) → ( ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ( ·𝑠𝑃 ) ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r𝑅 ) , ( 0g𝑅 ) ) ) ) = ( 0g𝑃 ) )
174 61 171 173 syl2anc ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ) → ( ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ( ·𝑠𝑃 ) ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r𝑅 ) , ( 0g𝑅 ) ) ) ) = ( 0g𝑃 ) )
175 169 174 sylan2 ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ ( { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ∖ ( 𝑥 supp ( 0g𝑅 ) ) ) ) → ( ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ( ·𝑠𝑃 ) ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r𝑅 ) , ( 0g𝑅 ) ) ) ) = ( 0g𝑃 ) )
176 168 175 eqtrd ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ ( { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ∖ ( 𝑥 supp ( 0g𝑅 ) ) ) ) → ( ( 𝑥𝑘 ) ( ·𝑠𝑃 ) ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r𝑅 ) , ( 0g𝑅 ) ) ) ) = ( 0g𝑃 ) )
177 176 48 suppss2 ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑃 ) ) → ( ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ↦ ( ( 𝑥𝑘 ) ( ·𝑠𝑃 ) ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r𝑅 ) , ( 0g𝑅 ) ) ) ) ) supp ( 0g𝑃 ) ) ⊆ ( 𝑥 supp ( 0g𝑅 ) ) )
178 suppssfifsupp ( ( ( ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ↦ ( ( 𝑥𝑘 ) ( ·𝑠𝑃 ) ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r𝑅 ) , ( 0g𝑅 ) ) ) ) ) ∈ V ∧ Fun ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ↦ ( ( 𝑥𝑘 ) ( ·𝑠𝑃 ) ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r𝑅 ) , ( 0g𝑅 ) ) ) ) ) ∧ ( 0g𝑃 ) ∈ V ) ∧ ( ( 𝑥 supp ( 0g𝑅 ) ) ∈ Fin ∧ ( ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ↦ ( ( 𝑥𝑘 ) ( ·𝑠𝑃 ) ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r𝑅 ) , ( 0g𝑅 ) ) ) ) ) supp ( 0g𝑃 ) ) ⊆ ( 𝑥 supp ( 0g𝑅 ) ) ) ) → ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ↦ ( ( 𝑥𝑘 ) ( ·𝑠𝑃 ) ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r𝑅 ) , ( 0g𝑅 ) ) ) ) ) finSupp ( 0g𝑃 ) )
179 157 161 177 178 syl12anc ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑃 ) ) → ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ↦ ( ( 𝑥𝑘 ) ( ·𝑠𝑃 ) ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r𝑅 ) , ( 0g𝑅 ) ) ) ) ) finSupp ( 0g𝑃 ) )
180 40 45 48 58 152 179 gsumsubgcl ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑃 ) ) → ( 𝑃 Σg ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ↦ ( ( 𝑥𝑘 ) ( ·𝑠𝑃 ) ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r𝑅 ) , ( 0g𝑅 ) ) ) ) ) ) ∈ ( 𝐴 ‘ ran 𝑉 ) )
181 39 180 eqeltrd ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑃 ) ) → 𝑥 ∈ ( 𝐴 ‘ ran 𝑉 ) )
182 31 181 eqelssd ( 𝜑 → ( 𝐴 ‘ ran 𝑉 ) = ( Base ‘ 𝑃 ) )