Step |
Hyp |
Ref |
Expression |
1 |
|
mplbas2.p |
⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) |
2 |
|
mplbas2.s |
⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) |
3 |
|
mplbas2.v |
⊢ 𝑉 = ( 𝐼 mVar 𝑅 ) |
4 |
|
mplbas2.a |
⊢ 𝐴 = ( AlgSpan ‘ 𝑆 ) |
5 |
|
mplbas2.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) |
6 |
|
mplbas2.r |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
7 |
2 5 6
|
psrassa |
⊢ ( 𝜑 → 𝑆 ∈ AssAlg ) |
8 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
9 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
10 |
1 2 8 9
|
mplbasss |
⊢ ( Base ‘ 𝑃 ) ⊆ ( Base ‘ 𝑆 ) |
11 |
10
|
a1i |
⊢ ( 𝜑 → ( Base ‘ 𝑃 ) ⊆ ( Base ‘ 𝑆 ) ) |
12 |
|
crngring |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) |
13 |
6 12
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
14 |
2 3 9 5 13
|
mvrf |
⊢ ( 𝜑 → 𝑉 : 𝐼 ⟶ ( Base ‘ 𝑆 ) ) |
15 |
14
|
ffnd |
⊢ ( 𝜑 → 𝑉 Fn 𝐼 ) |
16 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝐼 ∈ 𝑊 ) |
17 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑅 ∈ Ring ) |
18 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑥 ∈ 𝐼 ) |
19 |
1 3 8 16 17 18
|
mvrcl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑉 ‘ 𝑥 ) ∈ ( Base ‘ 𝑃 ) ) |
20 |
19
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐼 ( 𝑉 ‘ 𝑥 ) ∈ ( Base ‘ 𝑃 ) ) |
21 |
|
ffnfv |
⊢ ( 𝑉 : 𝐼 ⟶ ( Base ‘ 𝑃 ) ↔ ( 𝑉 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑉 ‘ 𝑥 ) ∈ ( Base ‘ 𝑃 ) ) ) |
22 |
15 20 21
|
sylanbrc |
⊢ ( 𝜑 → 𝑉 : 𝐼 ⟶ ( Base ‘ 𝑃 ) ) |
23 |
22
|
frnd |
⊢ ( 𝜑 → ran 𝑉 ⊆ ( Base ‘ 𝑃 ) ) |
24 |
4 9
|
aspss |
⊢ ( ( 𝑆 ∈ AssAlg ∧ ( Base ‘ 𝑃 ) ⊆ ( Base ‘ 𝑆 ) ∧ ran 𝑉 ⊆ ( Base ‘ 𝑃 ) ) → ( 𝐴 ‘ ran 𝑉 ) ⊆ ( 𝐴 ‘ ( Base ‘ 𝑃 ) ) ) |
25 |
7 11 23 24
|
syl3anc |
⊢ ( 𝜑 → ( 𝐴 ‘ ran 𝑉 ) ⊆ ( 𝐴 ‘ ( Base ‘ 𝑃 ) ) ) |
26 |
2 1 8 5 13
|
mplsubrg |
⊢ ( 𝜑 → ( Base ‘ 𝑃 ) ∈ ( SubRing ‘ 𝑆 ) ) |
27 |
2 1 8 5 13
|
mpllss |
⊢ ( 𝜑 → ( Base ‘ 𝑃 ) ∈ ( LSubSp ‘ 𝑆 ) ) |
28 |
|
eqid |
⊢ ( LSubSp ‘ 𝑆 ) = ( LSubSp ‘ 𝑆 ) |
29 |
4 9 28
|
aspid |
⊢ ( ( 𝑆 ∈ AssAlg ∧ ( Base ‘ 𝑃 ) ∈ ( SubRing ‘ 𝑆 ) ∧ ( Base ‘ 𝑃 ) ∈ ( LSubSp ‘ 𝑆 ) ) → ( 𝐴 ‘ ( Base ‘ 𝑃 ) ) = ( Base ‘ 𝑃 ) ) |
30 |
7 26 27 29
|
syl3anc |
⊢ ( 𝜑 → ( 𝐴 ‘ ( Base ‘ 𝑃 ) ) = ( Base ‘ 𝑃 ) ) |
31 |
25 30
|
sseqtrd |
⊢ ( 𝜑 → ( 𝐴 ‘ ran 𝑉 ) ⊆ ( Base ‘ 𝑃 ) ) |
32 |
|
eqid |
⊢ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } |
33 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
34 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
35 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) → 𝐼 ∈ 𝑊 ) |
36 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑃 ) = ( ·𝑠 ‘ 𝑃 ) |
37 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) → 𝑅 ∈ Ring ) |
38 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) → 𝑥 ∈ ( Base ‘ 𝑃 ) ) |
39 |
1 32 33 34 35 8 36 37 38
|
mplcoe1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) → 𝑥 = ( 𝑃 Σg ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ ( ( 𝑥 ‘ 𝑘 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) ) ) ) |
40 |
|
eqid |
⊢ ( 0g ‘ 𝑃 ) = ( 0g ‘ 𝑃 ) |
41 |
1
|
mplring |
⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝑅 ∈ Ring ) → 𝑃 ∈ Ring ) |
42 |
5 13 41
|
syl2anc |
⊢ ( 𝜑 → 𝑃 ∈ Ring ) |
43 |
|
ringabl |
⊢ ( 𝑃 ∈ Ring → 𝑃 ∈ Abel ) |
44 |
42 43
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ Abel ) |
45 |
44
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) → 𝑃 ∈ Abel ) |
46 |
|
ovex |
⊢ ( ℕ0 ↑m 𝐼 ) ∈ V |
47 |
46
|
rabex |
⊢ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∈ V |
48 |
47
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) → { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∈ V ) |
49 |
14
|
frnd |
⊢ ( 𝜑 → ran 𝑉 ⊆ ( Base ‘ 𝑆 ) ) |
50 |
4 9
|
aspsubrg |
⊢ ( ( 𝑆 ∈ AssAlg ∧ ran 𝑉 ⊆ ( Base ‘ 𝑆 ) ) → ( 𝐴 ‘ ran 𝑉 ) ∈ ( SubRing ‘ 𝑆 ) ) |
51 |
7 49 50
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 ‘ ran 𝑉 ) ∈ ( SubRing ‘ 𝑆 ) ) |
52 |
1 2 8
|
mplval2 |
⊢ 𝑃 = ( 𝑆 ↾s ( Base ‘ 𝑃 ) ) |
53 |
52
|
subsubrg |
⊢ ( ( Base ‘ 𝑃 ) ∈ ( SubRing ‘ 𝑆 ) → ( ( 𝐴 ‘ ran 𝑉 ) ∈ ( SubRing ‘ 𝑃 ) ↔ ( ( 𝐴 ‘ ran 𝑉 ) ∈ ( SubRing ‘ 𝑆 ) ∧ ( 𝐴 ‘ ran 𝑉 ) ⊆ ( Base ‘ 𝑃 ) ) ) ) |
54 |
26 53
|
syl |
⊢ ( 𝜑 → ( ( 𝐴 ‘ ran 𝑉 ) ∈ ( SubRing ‘ 𝑃 ) ↔ ( ( 𝐴 ‘ ran 𝑉 ) ∈ ( SubRing ‘ 𝑆 ) ∧ ( 𝐴 ‘ ran 𝑉 ) ⊆ ( Base ‘ 𝑃 ) ) ) ) |
55 |
51 31 54
|
mpbir2and |
⊢ ( 𝜑 → ( 𝐴 ‘ ran 𝑉 ) ∈ ( SubRing ‘ 𝑃 ) ) |
56 |
|
subrgsubg |
⊢ ( ( 𝐴 ‘ ran 𝑉 ) ∈ ( SubRing ‘ 𝑃 ) → ( 𝐴 ‘ ran 𝑉 ) ∈ ( SubGrp ‘ 𝑃 ) ) |
57 |
55 56
|
syl |
⊢ ( 𝜑 → ( 𝐴 ‘ ran 𝑉 ) ∈ ( SubGrp ‘ 𝑃 ) ) |
58 |
57
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) → ( 𝐴 ‘ ran 𝑉 ) ∈ ( SubGrp ‘ 𝑃 ) ) |
59 |
1
|
mpllmod |
⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝑅 ∈ Ring ) → 𝑃 ∈ LMod ) |
60 |
5 13 59
|
syl2anc |
⊢ ( 𝜑 → 𝑃 ∈ LMod ) |
61 |
60
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → 𝑃 ∈ LMod ) |
62 |
4 9 28
|
asplss |
⊢ ( ( 𝑆 ∈ AssAlg ∧ ran 𝑉 ⊆ ( Base ‘ 𝑆 ) ) → ( 𝐴 ‘ ran 𝑉 ) ∈ ( LSubSp ‘ 𝑆 ) ) |
63 |
7 49 62
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 ‘ ran 𝑉 ) ∈ ( LSubSp ‘ 𝑆 ) ) |
64 |
2 5 13
|
psrlmod |
⊢ ( 𝜑 → 𝑆 ∈ LMod ) |
65 |
|
eqid |
⊢ ( LSubSp ‘ 𝑃 ) = ( LSubSp ‘ 𝑃 ) |
66 |
52 28 65
|
lsslss |
⊢ ( ( 𝑆 ∈ LMod ∧ ( Base ‘ 𝑃 ) ∈ ( LSubSp ‘ 𝑆 ) ) → ( ( 𝐴 ‘ ran 𝑉 ) ∈ ( LSubSp ‘ 𝑃 ) ↔ ( ( 𝐴 ‘ ran 𝑉 ) ∈ ( LSubSp ‘ 𝑆 ) ∧ ( 𝐴 ‘ ran 𝑉 ) ⊆ ( Base ‘ 𝑃 ) ) ) ) |
67 |
64 27 66
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐴 ‘ ran 𝑉 ) ∈ ( LSubSp ‘ 𝑃 ) ↔ ( ( 𝐴 ‘ ran 𝑉 ) ∈ ( LSubSp ‘ 𝑆 ) ∧ ( 𝐴 ‘ ran 𝑉 ) ⊆ ( Base ‘ 𝑃 ) ) ) ) |
68 |
63 31 67
|
mpbir2and |
⊢ ( 𝜑 → ( 𝐴 ‘ ran 𝑉 ) ∈ ( LSubSp ‘ 𝑃 ) ) |
69 |
68
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( 𝐴 ‘ ran 𝑉 ) ∈ ( LSubSp ‘ 𝑃 ) ) |
70 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
71 |
1 70 8 32 38
|
mplelf |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) → 𝑥 : { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) ) |
72 |
71
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( 𝑥 ‘ 𝑘 ) ∈ ( Base ‘ 𝑅 ) ) |
73 |
1 35 37
|
mplsca |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
74 |
73
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
75 |
74
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
76 |
72 75
|
eleqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( 𝑥 ‘ 𝑘 ) ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
77 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → 𝐼 ∈ 𝑊 ) |
78 |
|
eqid |
⊢ ( mulGrp ‘ 𝑃 ) = ( mulGrp ‘ 𝑃 ) |
79 |
|
eqid |
⊢ ( .g ‘ ( mulGrp ‘ 𝑃 ) ) = ( .g ‘ ( mulGrp ‘ 𝑃 ) ) |
80 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → 𝑅 ∈ CRing ) |
81 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) |
82 |
1 32 33 34 77 78 79 3 80 81
|
mplcoe2 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) = ( ( mulGrp ‘ 𝑃 ) Σg ( 𝑧 ∈ 𝐼 ↦ ( ( 𝑘 ‘ 𝑧 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( 𝑉 ‘ 𝑧 ) ) ) ) ) |
83 |
|
eqid |
⊢ ( 1r ‘ 𝑃 ) = ( 1r ‘ 𝑃 ) |
84 |
78 83
|
ringidval |
⊢ ( 1r ‘ 𝑃 ) = ( 0g ‘ ( mulGrp ‘ 𝑃 ) ) |
85 |
1
|
mplcrng |
⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝑅 ∈ CRing ) → 𝑃 ∈ CRing ) |
86 |
5 6 85
|
syl2anc |
⊢ ( 𝜑 → 𝑃 ∈ CRing ) |
87 |
78
|
crngmgp |
⊢ ( 𝑃 ∈ CRing → ( mulGrp ‘ 𝑃 ) ∈ CMnd ) |
88 |
86 87
|
syl |
⊢ ( 𝜑 → ( mulGrp ‘ 𝑃 ) ∈ CMnd ) |
89 |
88
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( mulGrp ‘ 𝑃 ) ∈ CMnd ) |
90 |
55
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( 𝐴 ‘ ran 𝑉 ) ∈ ( SubRing ‘ 𝑃 ) ) |
91 |
78
|
subrgsubm |
⊢ ( ( 𝐴 ‘ ran 𝑉 ) ∈ ( SubRing ‘ 𝑃 ) → ( 𝐴 ‘ ran 𝑉 ) ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑃 ) ) ) |
92 |
90 91
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( 𝐴 ‘ ran 𝑉 ) ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑃 ) ) ) |
93 |
|
simplll |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑧 ∈ 𝐼 ) → 𝜑 ) |
94 |
32
|
psrbag |
⊢ ( 𝐼 ∈ 𝑊 → ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↔ ( 𝑘 : 𝐼 ⟶ ℕ0 ∧ ( ◡ 𝑘 “ ℕ ) ∈ Fin ) ) ) |
95 |
35 94
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) → ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↔ ( 𝑘 : 𝐼 ⟶ ℕ0 ∧ ( ◡ 𝑘 “ ℕ ) ∈ Fin ) ) ) |
96 |
95
|
biimpa |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( 𝑘 : 𝐼 ⟶ ℕ0 ∧ ( ◡ 𝑘 “ ℕ ) ∈ Fin ) ) |
97 |
96
|
simpld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → 𝑘 : 𝐼 ⟶ ℕ0 ) |
98 |
97
|
ffvelrnda |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑧 ∈ 𝐼 ) → ( 𝑘 ‘ 𝑧 ) ∈ ℕ0 ) |
99 |
4 9
|
aspssid |
⊢ ( ( 𝑆 ∈ AssAlg ∧ ran 𝑉 ⊆ ( Base ‘ 𝑆 ) ) → ran 𝑉 ⊆ ( 𝐴 ‘ ran 𝑉 ) ) |
100 |
7 49 99
|
syl2anc |
⊢ ( 𝜑 → ran 𝑉 ⊆ ( 𝐴 ‘ ran 𝑉 ) ) |
101 |
100
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑧 ∈ 𝐼 ) → ran 𝑉 ⊆ ( 𝐴 ‘ ran 𝑉 ) ) |
102 |
15
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → 𝑉 Fn 𝐼 ) |
103 |
|
fnfvelrn |
⊢ ( ( 𝑉 Fn 𝐼 ∧ 𝑧 ∈ 𝐼 ) → ( 𝑉 ‘ 𝑧 ) ∈ ran 𝑉 ) |
104 |
102 103
|
sylan |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑧 ∈ 𝐼 ) → ( 𝑉 ‘ 𝑧 ) ∈ ran 𝑉 ) |
105 |
101 104
|
sseldd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑧 ∈ 𝐼 ) → ( 𝑉 ‘ 𝑧 ) ∈ ( 𝐴 ‘ ran 𝑉 ) ) |
106 |
78 8
|
mgpbas |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ ( mulGrp ‘ 𝑃 ) ) |
107 |
|
eqid |
⊢ ( .r ‘ 𝑃 ) = ( .r ‘ 𝑃 ) |
108 |
78 107
|
mgpplusg |
⊢ ( .r ‘ 𝑃 ) = ( +g ‘ ( mulGrp ‘ 𝑃 ) ) |
109 |
107
|
subrgmcl |
⊢ ( ( ( 𝐴 ‘ ran 𝑉 ) ∈ ( SubRing ‘ 𝑃 ) ∧ 𝑢 ∈ ( 𝐴 ‘ ran 𝑉 ) ∧ 𝑣 ∈ ( 𝐴 ‘ ran 𝑉 ) ) → ( 𝑢 ( .r ‘ 𝑃 ) 𝑣 ) ∈ ( 𝐴 ‘ ran 𝑉 ) ) |
110 |
55 109
|
syl3an1 |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝐴 ‘ ran 𝑉 ) ∧ 𝑣 ∈ ( 𝐴 ‘ ran 𝑉 ) ) → ( 𝑢 ( .r ‘ 𝑃 ) 𝑣 ) ∈ ( 𝐴 ‘ ran 𝑉 ) ) |
111 |
83
|
subrg1cl |
⊢ ( ( 𝐴 ‘ ran 𝑉 ) ∈ ( SubRing ‘ 𝑃 ) → ( 1r ‘ 𝑃 ) ∈ ( 𝐴 ‘ ran 𝑉 ) ) |
112 |
55 111
|
syl |
⊢ ( 𝜑 → ( 1r ‘ 𝑃 ) ∈ ( 𝐴 ‘ ran 𝑉 ) ) |
113 |
106 79 108 88 31 110 84 112
|
mulgnn0subcl |
⊢ ( ( 𝜑 ∧ ( 𝑘 ‘ 𝑧 ) ∈ ℕ0 ∧ ( 𝑉 ‘ 𝑧 ) ∈ ( 𝐴 ‘ ran 𝑉 ) ) → ( ( 𝑘 ‘ 𝑧 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( 𝑉 ‘ 𝑧 ) ) ∈ ( 𝐴 ‘ ran 𝑉 ) ) |
114 |
93 98 105 113
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑧 ∈ 𝐼 ) → ( ( 𝑘 ‘ 𝑧 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( 𝑉 ‘ 𝑧 ) ) ∈ ( 𝐴 ‘ ran 𝑉 ) ) |
115 |
114
|
fmpttd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( 𝑧 ∈ 𝐼 ↦ ( ( 𝑘 ‘ 𝑧 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( 𝑉 ‘ 𝑧 ) ) ) : 𝐼 ⟶ ( 𝐴 ‘ ran 𝑉 ) ) |
116 |
5
|
mptexd |
⊢ ( 𝜑 → ( 𝑧 ∈ 𝐼 ↦ ( ( 𝑘 ‘ 𝑧 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( 𝑉 ‘ 𝑧 ) ) ) ∈ V ) |
117 |
116
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( 𝑧 ∈ 𝐼 ↦ ( ( 𝑘 ‘ 𝑧 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( 𝑉 ‘ 𝑧 ) ) ) ∈ V ) |
118 |
|
funmpt |
⊢ Fun ( 𝑧 ∈ 𝐼 ↦ ( ( 𝑘 ‘ 𝑧 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( 𝑉 ‘ 𝑧 ) ) ) |
119 |
118
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → Fun ( 𝑧 ∈ 𝐼 ↦ ( ( 𝑘 ‘ 𝑧 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( 𝑉 ‘ 𝑧 ) ) ) ) |
120 |
|
fvexd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( 1r ‘ 𝑃 ) ∈ V ) |
121 |
96
|
simprd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( ◡ 𝑘 “ ℕ ) ∈ Fin ) |
122 |
|
elrabi |
⊢ ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } → 𝑘 ∈ ( ℕ0 ↑m 𝐼 ) ) |
123 |
|
elmapi |
⊢ ( 𝑘 ∈ ( ℕ0 ↑m 𝐼 ) → 𝑘 : 𝐼 ⟶ ℕ0 ) |
124 |
123
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ ( ℕ0 ↑m 𝐼 ) ) → 𝑘 : 𝐼 ⟶ ℕ0 ) |
125 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ ( ℕ0 ↑m 𝐼 ) ) → 𝐼 ∈ 𝑊 ) |
126 |
|
frnnn0supp |
⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝑘 : 𝐼 ⟶ ℕ0 ) → ( 𝑘 supp 0 ) = ( ◡ 𝑘 “ ℕ ) ) |
127 |
125 124 126
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ ( ℕ0 ↑m 𝐼 ) ) → ( 𝑘 supp 0 ) = ( ◡ 𝑘 “ ℕ ) ) |
128 |
|
eqimss |
⊢ ( ( 𝑘 supp 0 ) = ( ◡ 𝑘 “ ℕ ) → ( 𝑘 supp 0 ) ⊆ ( ◡ 𝑘 “ ℕ ) ) |
129 |
127 128
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ ( ℕ0 ↑m 𝐼 ) ) → ( 𝑘 supp 0 ) ⊆ ( ◡ 𝑘 “ ℕ ) ) |
130 |
|
c0ex |
⊢ 0 ∈ V |
131 |
130
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ ( ℕ0 ↑m 𝐼 ) ) → 0 ∈ V ) |
132 |
124 129 125 131
|
suppssr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ ( ℕ0 ↑m 𝐼 ) ) ∧ 𝑧 ∈ ( 𝐼 ∖ ( ◡ 𝑘 “ ℕ ) ) ) → ( 𝑘 ‘ 𝑧 ) = 0 ) |
133 |
122 132
|
sylanl2 |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑧 ∈ ( 𝐼 ∖ ( ◡ 𝑘 “ ℕ ) ) ) → ( 𝑘 ‘ 𝑧 ) = 0 ) |
134 |
133
|
oveq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑧 ∈ ( 𝐼 ∖ ( ◡ 𝑘 “ ℕ ) ) ) → ( ( 𝑘 ‘ 𝑧 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( 𝑉 ‘ 𝑧 ) ) = ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( 𝑉 ‘ 𝑧 ) ) ) |
135 |
5
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑧 ∈ ( 𝐼 ∖ ( ◡ 𝑘 “ ℕ ) ) ) → 𝐼 ∈ 𝑊 ) |
136 |
13
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑧 ∈ ( 𝐼 ∖ ( ◡ 𝑘 “ ℕ ) ) ) → 𝑅 ∈ Ring ) |
137 |
|
eldifi |
⊢ ( 𝑧 ∈ ( 𝐼 ∖ ( ◡ 𝑘 “ ℕ ) ) → 𝑧 ∈ 𝐼 ) |
138 |
137
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑧 ∈ ( 𝐼 ∖ ( ◡ 𝑘 “ ℕ ) ) ) → 𝑧 ∈ 𝐼 ) |
139 |
1 3 8 135 136 138
|
mvrcl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑧 ∈ ( 𝐼 ∖ ( ◡ 𝑘 “ ℕ ) ) ) → ( 𝑉 ‘ 𝑧 ) ∈ ( Base ‘ 𝑃 ) ) |
140 |
106 84 79
|
mulg0 |
⊢ ( ( 𝑉 ‘ 𝑧 ) ∈ ( Base ‘ 𝑃 ) → ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( 𝑉 ‘ 𝑧 ) ) = ( 1r ‘ 𝑃 ) ) |
141 |
139 140
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑧 ∈ ( 𝐼 ∖ ( ◡ 𝑘 “ ℕ ) ) ) → ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( 𝑉 ‘ 𝑧 ) ) = ( 1r ‘ 𝑃 ) ) |
142 |
134 141
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑧 ∈ ( 𝐼 ∖ ( ◡ 𝑘 “ ℕ ) ) ) → ( ( 𝑘 ‘ 𝑧 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( 𝑉 ‘ 𝑧 ) ) = ( 1r ‘ 𝑃 ) ) |
143 |
142 77
|
suppss2 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( ( 𝑧 ∈ 𝐼 ↦ ( ( 𝑘 ‘ 𝑧 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( 𝑉 ‘ 𝑧 ) ) ) supp ( 1r ‘ 𝑃 ) ) ⊆ ( ◡ 𝑘 “ ℕ ) ) |
144 |
|
suppssfifsupp |
⊢ ( ( ( ( 𝑧 ∈ 𝐼 ↦ ( ( 𝑘 ‘ 𝑧 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( 𝑉 ‘ 𝑧 ) ) ) ∈ V ∧ Fun ( 𝑧 ∈ 𝐼 ↦ ( ( 𝑘 ‘ 𝑧 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( 𝑉 ‘ 𝑧 ) ) ) ∧ ( 1r ‘ 𝑃 ) ∈ V ) ∧ ( ( ◡ 𝑘 “ ℕ ) ∈ Fin ∧ ( ( 𝑧 ∈ 𝐼 ↦ ( ( 𝑘 ‘ 𝑧 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( 𝑉 ‘ 𝑧 ) ) ) supp ( 1r ‘ 𝑃 ) ) ⊆ ( ◡ 𝑘 “ ℕ ) ) ) → ( 𝑧 ∈ 𝐼 ↦ ( ( 𝑘 ‘ 𝑧 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( 𝑉 ‘ 𝑧 ) ) ) finSupp ( 1r ‘ 𝑃 ) ) |
145 |
117 119 120 121 143 144
|
syl32anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( 𝑧 ∈ 𝐼 ↦ ( ( 𝑘 ‘ 𝑧 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( 𝑉 ‘ 𝑧 ) ) ) finSupp ( 1r ‘ 𝑃 ) ) |
146 |
84 89 77 92 115 145
|
gsumsubmcl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( ( mulGrp ‘ 𝑃 ) Σg ( 𝑧 ∈ 𝐼 ↦ ( ( 𝑘 ‘ 𝑧 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( 𝑉 ‘ 𝑧 ) ) ) ) ∈ ( 𝐴 ‘ ran 𝑉 ) ) |
147 |
82 146
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ∈ ( 𝐴 ‘ ran 𝑉 ) ) |
148 |
|
eqid |
⊢ ( Scalar ‘ 𝑃 ) = ( Scalar ‘ 𝑃 ) |
149 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑃 ) ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) |
150 |
148 36 149 65
|
lssvscl |
⊢ ( ( ( 𝑃 ∈ LMod ∧ ( 𝐴 ‘ ran 𝑉 ) ∈ ( LSubSp ‘ 𝑃 ) ) ∧ ( ( 𝑥 ‘ 𝑘 ) ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ∈ ( 𝐴 ‘ ran 𝑉 ) ) ) → ( ( 𝑥 ‘ 𝑘 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) ∈ ( 𝐴 ‘ ran 𝑉 ) ) |
151 |
61 69 76 147 150
|
syl22anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( ( 𝑥 ‘ 𝑘 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) ∈ ( 𝐴 ‘ ran 𝑉 ) ) |
152 |
151
|
fmpttd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) → ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ ( ( 𝑥 ‘ 𝑘 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) ) : { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ⟶ ( 𝐴 ‘ ran 𝑉 ) ) |
153 |
46
|
mptrabex |
⊢ ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ ( ( 𝑥 ‘ 𝑘 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) ) ∈ V |
154 |
|
funmpt |
⊢ Fun ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ ( ( 𝑥 ‘ 𝑘 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) ) |
155 |
|
fvex |
⊢ ( 0g ‘ 𝑃 ) ∈ V |
156 |
153 154 155
|
3pm3.2i |
⊢ ( ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ ( ( 𝑥 ‘ 𝑘 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) ) ∈ V ∧ Fun ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ ( ( 𝑥 ‘ 𝑘 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) ) ∧ ( 0g ‘ 𝑃 ) ∈ V ) |
157 |
156
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) → ( ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ ( ( 𝑥 ‘ 𝑘 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) ) ∈ V ∧ Fun ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ ( ( 𝑥 ‘ 𝑘 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) ) ∧ ( 0g ‘ 𝑃 ) ∈ V ) ) |
158 |
1 2 9 33 8
|
mplelbas |
⊢ ( 𝑥 ∈ ( Base ‘ 𝑃 ) ↔ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 finSupp ( 0g ‘ 𝑅 ) ) ) |
159 |
158
|
simprbi |
⊢ ( 𝑥 ∈ ( Base ‘ 𝑃 ) → 𝑥 finSupp ( 0g ‘ 𝑅 ) ) |
160 |
159
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) → 𝑥 finSupp ( 0g ‘ 𝑅 ) ) |
161 |
160
|
fsuppimpd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) → ( 𝑥 supp ( 0g ‘ 𝑅 ) ) ∈ Fin ) |
162 |
|
ssidd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) → ( 𝑥 supp ( 0g ‘ 𝑅 ) ) ⊆ ( 𝑥 supp ( 0g ‘ 𝑅 ) ) ) |
163 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) → ( 0g ‘ 𝑅 ) ∈ V ) |
164 |
71 162 48 163
|
suppssr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∖ ( 𝑥 supp ( 0g ‘ 𝑅 ) ) ) ) → ( 𝑥 ‘ 𝑘 ) = ( 0g ‘ 𝑅 ) ) |
165 |
73
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) → ( 0g ‘ 𝑅 ) = ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ) |
166 |
165
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∖ ( 𝑥 supp ( 0g ‘ 𝑅 ) ) ) ) → ( 0g ‘ 𝑅 ) = ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ) |
167 |
164 166
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∖ ( 𝑥 supp ( 0g ‘ 𝑅 ) ) ) ) → ( 𝑥 ‘ 𝑘 ) = ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ) |
168 |
167
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∖ ( 𝑥 supp ( 0g ‘ 𝑅 ) ) ) ) → ( ( 𝑥 ‘ 𝑘 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) = ( ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) ) |
169 |
|
eldifi |
⊢ ( 𝑘 ∈ ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∖ ( 𝑥 supp ( 0g ‘ 𝑅 ) ) ) → 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) |
170 |
13
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → 𝑅 ∈ Ring ) |
171 |
1 8 33 34 32 77 170 81
|
mplmon |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ∈ ( Base ‘ 𝑃 ) ) |
172 |
|
eqid |
⊢ ( 0g ‘ ( Scalar ‘ 𝑃 ) ) = ( 0g ‘ ( Scalar ‘ 𝑃 ) ) |
173 |
8 148 36 172 40
|
lmod0vs |
⊢ ( ( 𝑃 ∈ LMod ∧ ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ∈ ( Base ‘ 𝑃 ) ) → ( ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) = ( 0g ‘ 𝑃 ) ) |
174 |
61 171 173
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) = ( 0g ‘ 𝑃 ) ) |
175 |
169 174
|
sylan2 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∖ ( 𝑥 supp ( 0g ‘ 𝑅 ) ) ) ) → ( ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) = ( 0g ‘ 𝑃 ) ) |
176 |
168 175
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∖ ( 𝑥 supp ( 0g ‘ 𝑅 ) ) ) ) → ( ( 𝑥 ‘ 𝑘 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) = ( 0g ‘ 𝑃 ) ) |
177 |
176 48
|
suppss2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) → ( ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ ( ( 𝑥 ‘ 𝑘 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) ) supp ( 0g ‘ 𝑃 ) ) ⊆ ( 𝑥 supp ( 0g ‘ 𝑅 ) ) ) |
178 |
|
suppssfifsupp |
⊢ ( ( ( ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ ( ( 𝑥 ‘ 𝑘 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) ) ∈ V ∧ Fun ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ ( ( 𝑥 ‘ 𝑘 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) ) ∧ ( 0g ‘ 𝑃 ) ∈ V ) ∧ ( ( 𝑥 supp ( 0g ‘ 𝑅 ) ) ∈ Fin ∧ ( ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ ( ( 𝑥 ‘ 𝑘 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) ) supp ( 0g ‘ 𝑃 ) ) ⊆ ( 𝑥 supp ( 0g ‘ 𝑅 ) ) ) ) → ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ ( ( 𝑥 ‘ 𝑘 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) ) finSupp ( 0g ‘ 𝑃 ) ) |
179 |
157 161 177 178
|
syl12anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) → ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ ( ( 𝑥 ‘ 𝑘 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) ) finSupp ( 0g ‘ 𝑃 ) ) |
180 |
40 45 48 58 152 179
|
gsumsubgcl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) → ( 𝑃 Σg ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ ( ( 𝑥 ‘ 𝑘 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) ) ) ∈ ( 𝐴 ‘ ran 𝑉 ) ) |
181 |
39 180
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) → 𝑥 ∈ ( 𝐴 ‘ ran 𝑉 ) ) |
182 |
31 181
|
eqelssd |
⊢ ( 𝜑 → ( 𝐴 ‘ ran 𝑉 ) = ( Base ‘ 𝑃 ) ) |