Step |
Hyp |
Ref |
Expression |
1 |
|
psrplusgpropd.b1 |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝑅 ) ) |
2 |
|
psrplusgpropd.b2 |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝑆 ) ) |
3 |
|
psrplusgpropd.p |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) |
4 |
1 2
|
eqtr3d |
⊢ ( 𝜑 → ( Base ‘ 𝑅 ) = ( Base ‘ 𝑆 ) ) |
5 |
4
|
psrbaspropd |
⊢ ( 𝜑 → ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( Base ‘ ( 𝐼 mPwSer 𝑆 ) ) ) |
6 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐼 ∈ V ) → ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( Base ‘ ( 𝐼 mPwSer 𝑆 ) ) ) |
7 |
1 2 3
|
grpidpropd |
⊢ ( 𝜑 → ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑆 ) ) |
8 |
7
|
breq2d |
⊢ ( 𝜑 → ( 𝑎 finSupp ( 0g ‘ 𝑅 ) ↔ 𝑎 finSupp ( 0g ‘ 𝑆 ) ) ) |
9 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐼 ∈ V ) → ( 𝑎 finSupp ( 0g ‘ 𝑅 ) ↔ 𝑎 finSupp ( 0g ‘ 𝑆 ) ) ) |
10 |
6 9
|
rabeqbidv |
⊢ ( ( 𝜑 ∧ 𝐼 ∈ V ) → { 𝑎 ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ∣ 𝑎 finSupp ( 0g ‘ 𝑅 ) } = { 𝑎 ∈ ( Base ‘ ( 𝐼 mPwSer 𝑆 ) ) ∣ 𝑎 finSupp ( 0g ‘ 𝑆 ) } ) |
11 |
|
eqid |
⊢ ( 𝐼 mPoly 𝑅 ) = ( 𝐼 mPoly 𝑅 ) |
12 |
|
eqid |
⊢ ( 𝐼 mPwSer 𝑅 ) = ( 𝐼 mPwSer 𝑅 ) |
13 |
|
eqid |
⊢ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) |
14 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
15 |
|
eqid |
⊢ ( Base ‘ ( 𝐼 mPoly 𝑅 ) ) = ( Base ‘ ( 𝐼 mPoly 𝑅 ) ) |
16 |
11 12 13 14 15
|
mplbas |
⊢ ( Base ‘ ( 𝐼 mPoly 𝑅 ) ) = { 𝑎 ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ∣ 𝑎 finSupp ( 0g ‘ 𝑅 ) } |
17 |
|
eqid |
⊢ ( 𝐼 mPoly 𝑆 ) = ( 𝐼 mPoly 𝑆 ) |
18 |
|
eqid |
⊢ ( 𝐼 mPwSer 𝑆 ) = ( 𝐼 mPwSer 𝑆 ) |
19 |
|
eqid |
⊢ ( Base ‘ ( 𝐼 mPwSer 𝑆 ) ) = ( Base ‘ ( 𝐼 mPwSer 𝑆 ) ) |
20 |
|
eqid |
⊢ ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑆 ) |
21 |
|
eqid |
⊢ ( Base ‘ ( 𝐼 mPoly 𝑆 ) ) = ( Base ‘ ( 𝐼 mPoly 𝑆 ) ) |
22 |
17 18 19 20 21
|
mplbas |
⊢ ( Base ‘ ( 𝐼 mPoly 𝑆 ) ) = { 𝑎 ∈ ( Base ‘ ( 𝐼 mPwSer 𝑆 ) ) ∣ 𝑎 finSupp ( 0g ‘ 𝑆 ) } |
23 |
10 16 22
|
3eqtr4g |
⊢ ( ( 𝜑 ∧ 𝐼 ∈ V ) → ( Base ‘ ( 𝐼 mPoly 𝑅 ) ) = ( Base ‘ ( 𝐼 mPoly 𝑆 ) ) ) |
24 |
|
reldmmpl |
⊢ Rel dom mPoly |
25 |
24
|
ovprc1 |
⊢ ( ¬ 𝐼 ∈ V → ( 𝐼 mPoly 𝑅 ) = ∅ ) |
26 |
24
|
ovprc1 |
⊢ ( ¬ 𝐼 ∈ V → ( 𝐼 mPoly 𝑆 ) = ∅ ) |
27 |
25 26
|
eqtr4d |
⊢ ( ¬ 𝐼 ∈ V → ( 𝐼 mPoly 𝑅 ) = ( 𝐼 mPoly 𝑆 ) ) |
28 |
27
|
fveq2d |
⊢ ( ¬ 𝐼 ∈ V → ( Base ‘ ( 𝐼 mPoly 𝑅 ) ) = ( Base ‘ ( 𝐼 mPoly 𝑆 ) ) ) |
29 |
28
|
adantl |
⊢ ( ( 𝜑 ∧ ¬ 𝐼 ∈ V ) → ( Base ‘ ( 𝐼 mPoly 𝑅 ) ) = ( Base ‘ ( 𝐼 mPoly 𝑆 ) ) ) |
30 |
23 29
|
pm2.61dan |
⊢ ( 𝜑 → ( Base ‘ ( 𝐼 mPoly 𝑅 ) ) = ( Base ‘ ( 𝐼 mPoly 𝑆 ) ) ) |