Metamath Proof Explorer


Theorem mplbasss

Description: The set of polynomials is a subset of the set of power series. (Contributed by Mario Carneiro, 7-Jan-2015) (Revised by Mario Carneiro, 2-Oct-2015)

Ref Expression
Hypotheses mplval2.p 𝑃 = ( 𝐼 mPoly 𝑅 )
mplval2.s 𝑆 = ( 𝐼 mPwSer 𝑅 )
mplval2.u 𝑈 = ( Base ‘ 𝑃 )
mplbasss.b 𝐵 = ( Base ‘ 𝑆 )
Assertion mplbasss 𝑈𝐵

Proof

Step Hyp Ref Expression
1 mplval2.p 𝑃 = ( 𝐼 mPoly 𝑅 )
2 mplval2.s 𝑆 = ( 𝐼 mPwSer 𝑅 )
3 mplval2.u 𝑈 = ( Base ‘ 𝑃 )
4 mplbasss.b 𝐵 = ( Base ‘ 𝑆 )
5 eqid ( 0g𝑅 ) = ( 0g𝑅 )
6 1 2 4 5 3 mplbas 𝑈 = { 𝑓𝐵𝑓 finSupp ( 0g𝑅 ) }
7 6 ssrab3 𝑈𝐵