Step |
Hyp |
Ref |
Expression |
1 |
|
mplcoe1.p |
⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) |
2 |
|
mplcoe1.d |
⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } |
3 |
|
mplcoe1.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
4 |
|
mplcoe1.o |
⊢ 1 = ( 1r ‘ 𝑅 ) |
5 |
|
mplcoe1.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) |
6 |
|
mplcoe1.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
7 |
|
mplcoe1.n |
⊢ · = ( ·𝑠 ‘ 𝑃 ) |
8 |
|
mplcoe1.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
9 |
|
mplcoe1.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
10 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
11 |
1 10 6 2 9
|
mplelf |
⊢ ( 𝜑 → 𝑋 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
12 |
11
|
feqmptd |
⊢ ( 𝜑 → 𝑋 = ( 𝑦 ∈ 𝐷 ↦ ( 𝑋 ‘ 𝑦 ) ) ) |
13 |
|
iftrue |
⊢ ( 𝑦 ∈ ( 𝑋 supp 0 ) → if ( 𝑦 ∈ ( 𝑋 supp 0 ) , ( 𝑋 ‘ 𝑦 ) , 0 ) = ( 𝑋 ‘ 𝑦 ) ) |
14 |
13
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑦 ∈ ( 𝑋 supp 0 ) ) → if ( 𝑦 ∈ ( 𝑋 supp 0 ) , ( 𝑋 ‘ 𝑦 ) , 0 ) = ( 𝑋 ‘ 𝑦 ) ) |
15 |
|
eldif |
⊢ ( 𝑦 ∈ ( 𝐷 ∖ ( 𝑋 supp 0 ) ) ↔ ( 𝑦 ∈ 𝐷 ∧ ¬ 𝑦 ∈ ( 𝑋 supp 0 ) ) ) |
16 |
|
ssidd |
⊢ ( 𝜑 → ( 𝑋 supp 0 ) ⊆ ( 𝑋 supp 0 ) ) |
17 |
|
ovex |
⊢ ( ℕ0 ↑m 𝐼 ) ∈ V |
18 |
2 17
|
rabex2 |
⊢ 𝐷 ∈ V |
19 |
18
|
a1i |
⊢ ( 𝜑 → 𝐷 ∈ V ) |
20 |
3
|
fvexi |
⊢ 0 ∈ V |
21 |
20
|
a1i |
⊢ ( 𝜑 → 0 ∈ V ) |
22 |
11 16 19 21
|
suppssr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐷 ∖ ( 𝑋 supp 0 ) ) ) → ( 𝑋 ‘ 𝑦 ) = 0 ) |
23 |
22
|
ifeq2d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐷 ∖ ( 𝑋 supp 0 ) ) ) → if ( 𝑦 ∈ ( 𝑋 supp 0 ) , ( 𝑋 ‘ 𝑦 ) , ( 𝑋 ‘ 𝑦 ) ) = if ( 𝑦 ∈ ( 𝑋 supp 0 ) , ( 𝑋 ‘ 𝑦 ) , 0 ) ) |
24 |
|
ifid |
⊢ if ( 𝑦 ∈ ( 𝑋 supp 0 ) , ( 𝑋 ‘ 𝑦 ) , ( 𝑋 ‘ 𝑦 ) ) = ( 𝑋 ‘ 𝑦 ) |
25 |
23 24
|
eqtr3di |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐷 ∖ ( 𝑋 supp 0 ) ) ) → if ( 𝑦 ∈ ( 𝑋 supp 0 ) , ( 𝑋 ‘ 𝑦 ) , 0 ) = ( 𝑋 ‘ 𝑦 ) ) |
26 |
15 25
|
sylan2br |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐷 ∧ ¬ 𝑦 ∈ ( 𝑋 supp 0 ) ) ) → if ( 𝑦 ∈ ( 𝑋 supp 0 ) , ( 𝑋 ‘ 𝑦 ) , 0 ) = ( 𝑋 ‘ 𝑦 ) ) |
27 |
26
|
anassrs |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) ∧ ¬ 𝑦 ∈ ( 𝑋 supp 0 ) ) → if ( 𝑦 ∈ ( 𝑋 supp 0 ) , ( 𝑋 ‘ 𝑦 ) , 0 ) = ( 𝑋 ‘ 𝑦 ) ) |
28 |
14 27
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → if ( 𝑦 ∈ ( 𝑋 supp 0 ) , ( 𝑋 ‘ 𝑦 ) , 0 ) = ( 𝑋 ‘ 𝑦 ) ) |
29 |
28
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ ( 𝑋 supp 0 ) , ( 𝑋 ‘ 𝑦 ) , 0 ) ) = ( 𝑦 ∈ 𝐷 ↦ ( 𝑋 ‘ 𝑦 ) ) ) |
30 |
12 29
|
eqtr4d |
⊢ ( 𝜑 → 𝑋 = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ ( 𝑋 supp 0 ) , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) |
31 |
|
suppssdm |
⊢ ( 𝑋 supp 0 ) ⊆ dom 𝑋 |
32 |
31 11
|
fssdm |
⊢ ( 𝜑 → ( 𝑋 supp 0 ) ⊆ 𝐷 ) |
33 |
|
eqid |
⊢ ( 𝐼 mPwSer 𝑅 ) = ( 𝐼 mPwSer 𝑅 ) |
34 |
|
eqid |
⊢ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) |
35 |
1 33 34 3 6
|
mplelbas |
⊢ ( 𝑋 ∈ 𝐵 ↔ ( 𝑋 ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ∧ 𝑋 finSupp 0 ) ) |
36 |
35
|
simprbi |
⊢ ( 𝑋 ∈ 𝐵 → 𝑋 finSupp 0 ) |
37 |
9 36
|
syl |
⊢ ( 𝜑 → 𝑋 finSupp 0 ) |
38 |
37
|
fsuppimpd |
⊢ ( 𝜑 → ( 𝑋 supp 0 ) ∈ Fin ) |
39 |
|
sseq1 |
⊢ ( 𝑤 = ∅ → ( 𝑤 ⊆ 𝐷 ↔ ∅ ⊆ 𝐷 ) ) |
40 |
|
mpteq1 |
⊢ ( 𝑤 = ∅ → ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) = ( 𝑘 ∈ ∅ ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) |
41 |
|
mpt0 |
⊢ ( 𝑘 ∈ ∅ ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) = ∅ |
42 |
40 41
|
eqtrdi |
⊢ ( 𝑤 = ∅ → ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) = ∅ ) |
43 |
42
|
oveq2d |
⊢ ( 𝑤 = ∅ → ( 𝑃 Σg ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑃 Σg ∅ ) ) |
44 |
|
eqid |
⊢ ( 0g ‘ 𝑃 ) = ( 0g ‘ 𝑃 ) |
45 |
44
|
gsum0 |
⊢ ( 𝑃 Σg ∅ ) = ( 0g ‘ 𝑃 ) |
46 |
43 45
|
eqtrdi |
⊢ ( 𝑤 = ∅ → ( 𝑃 Σg ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 0g ‘ 𝑃 ) ) |
47 |
|
noel |
⊢ ¬ 𝑦 ∈ ∅ |
48 |
|
eleq2 |
⊢ ( 𝑤 = ∅ → ( 𝑦 ∈ 𝑤 ↔ 𝑦 ∈ ∅ ) ) |
49 |
47 48
|
mtbiri |
⊢ ( 𝑤 = ∅ → ¬ 𝑦 ∈ 𝑤 ) |
50 |
49
|
iffalsed |
⊢ ( 𝑤 = ∅ → if ( 𝑦 ∈ 𝑤 , ( 𝑋 ‘ 𝑦 ) , 0 ) = 0 ) |
51 |
50
|
mpteq2dv |
⊢ ( 𝑤 = ∅ → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑤 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) = ( 𝑦 ∈ 𝐷 ↦ 0 ) ) |
52 |
46 51
|
eqeq12d |
⊢ ( 𝑤 = ∅ → ( ( 𝑃 Σg ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑤 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ↔ ( 0g ‘ 𝑃 ) = ( 𝑦 ∈ 𝐷 ↦ 0 ) ) ) |
53 |
39 52
|
imbi12d |
⊢ ( 𝑤 = ∅ → ( ( 𝑤 ⊆ 𝐷 → ( 𝑃 Σg ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑤 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) ↔ ( ∅ ⊆ 𝐷 → ( 0g ‘ 𝑃 ) = ( 𝑦 ∈ 𝐷 ↦ 0 ) ) ) ) |
54 |
53
|
imbi2d |
⊢ ( 𝑤 = ∅ → ( ( 𝜑 → ( 𝑤 ⊆ 𝐷 → ( 𝑃 Σg ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑤 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) ) ↔ ( 𝜑 → ( ∅ ⊆ 𝐷 → ( 0g ‘ 𝑃 ) = ( 𝑦 ∈ 𝐷 ↦ 0 ) ) ) ) ) |
55 |
|
sseq1 |
⊢ ( 𝑤 = 𝑥 → ( 𝑤 ⊆ 𝐷 ↔ 𝑥 ⊆ 𝐷 ) ) |
56 |
|
mpteq1 |
⊢ ( 𝑤 = 𝑥 → ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) = ( 𝑘 ∈ 𝑥 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) |
57 |
56
|
oveq2d |
⊢ ( 𝑤 = 𝑥 → ( 𝑃 Σg ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑃 Σg ( 𝑘 ∈ 𝑥 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) ) |
58 |
|
eleq2 |
⊢ ( 𝑤 = 𝑥 → ( 𝑦 ∈ 𝑤 ↔ 𝑦 ∈ 𝑥 ) ) |
59 |
58
|
ifbid |
⊢ ( 𝑤 = 𝑥 → if ( 𝑦 ∈ 𝑤 , ( 𝑋 ‘ 𝑦 ) , 0 ) = if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) |
60 |
59
|
mpteq2dv |
⊢ ( 𝑤 = 𝑥 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑤 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) |
61 |
57 60
|
eqeq12d |
⊢ ( 𝑤 = 𝑥 → ( ( 𝑃 Σg ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑤 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ↔ ( 𝑃 Σg ( 𝑘 ∈ 𝑥 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) ) |
62 |
55 61
|
imbi12d |
⊢ ( 𝑤 = 𝑥 → ( ( 𝑤 ⊆ 𝐷 → ( 𝑃 Σg ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑤 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) ↔ ( 𝑥 ⊆ 𝐷 → ( 𝑃 Σg ( 𝑘 ∈ 𝑥 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) ) ) |
63 |
62
|
imbi2d |
⊢ ( 𝑤 = 𝑥 → ( ( 𝜑 → ( 𝑤 ⊆ 𝐷 → ( 𝑃 Σg ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑤 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) ) ↔ ( 𝜑 → ( 𝑥 ⊆ 𝐷 → ( 𝑃 Σg ( 𝑘 ∈ 𝑥 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) ) ) ) |
64 |
|
sseq1 |
⊢ ( 𝑤 = ( 𝑥 ∪ { 𝑧 } ) → ( 𝑤 ⊆ 𝐷 ↔ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) |
65 |
|
mpteq1 |
⊢ ( 𝑤 = ( 𝑥 ∪ { 𝑧 } ) → ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) = ( 𝑘 ∈ ( 𝑥 ∪ { 𝑧 } ) ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) |
66 |
65
|
oveq2d |
⊢ ( 𝑤 = ( 𝑥 ∪ { 𝑧 } ) → ( 𝑃 Σg ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑃 Σg ( 𝑘 ∈ ( 𝑥 ∪ { 𝑧 } ) ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) ) |
67 |
|
eleq2 |
⊢ ( 𝑤 = ( 𝑥 ∪ { 𝑧 } ) → ( 𝑦 ∈ 𝑤 ↔ 𝑦 ∈ ( 𝑥 ∪ { 𝑧 } ) ) ) |
68 |
67
|
ifbid |
⊢ ( 𝑤 = ( 𝑥 ∪ { 𝑧 } ) → if ( 𝑦 ∈ 𝑤 , ( 𝑋 ‘ 𝑦 ) , 0 ) = if ( 𝑦 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑋 ‘ 𝑦 ) , 0 ) ) |
69 |
68
|
mpteq2dv |
⊢ ( 𝑤 = ( 𝑥 ∪ { 𝑧 } ) → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑤 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) |
70 |
66 69
|
eqeq12d |
⊢ ( 𝑤 = ( 𝑥 ∪ { 𝑧 } ) → ( ( 𝑃 Σg ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑤 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ↔ ( 𝑃 Σg ( 𝑘 ∈ ( 𝑥 ∪ { 𝑧 } ) ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) ) |
71 |
64 70
|
imbi12d |
⊢ ( 𝑤 = ( 𝑥 ∪ { 𝑧 } ) → ( ( 𝑤 ⊆ 𝐷 → ( 𝑃 Σg ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑤 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) ↔ ( ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 → ( 𝑃 Σg ( 𝑘 ∈ ( 𝑥 ∪ { 𝑧 } ) ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) ) ) |
72 |
71
|
imbi2d |
⊢ ( 𝑤 = ( 𝑥 ∪ { 𝑧 } ) → ( ( 𝜑 → ( 𝑤 ⊆ 𝐷 → ( 𝑃 Σg ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑤 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) ) ↔ ( 𝜑 → ( ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 → ( 𝑃 Σg ( 𝑘 ∈ ( 𝑥 ∪ { 𝑧 } ) ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) ) ) ) |
73 |
|
sseq1 |
⊢ ( 𝑤 = ( 𝑋 supp 0 ) → ( 𝑤 ⊆ 𝐷 ↔ ( 𝑋 supp 0 ) ⊆ 𝐷 ) ) |
74 |
|
mpteq1 |
⊢ ( 𝑤 = ( 𝑋 supp 0 ) → ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) = ( 𝑘 ∈ ( 𝑋 supp 0 ) ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) |
75 |
74
|
oveq2d |
⊢ ( 𝑤 = ( 𝑋 supp 0 ) → ( 𝑃 Σg ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑃 Σg ( 𝑘 ∈ ( 𝑋 supp 0 ) ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) ) |
76 |
|
eleq2 |
⊢ ( 𝑤 = ( 𝑋 supp 0 ) → ( 𝑦 ∈ 𝑤 ↔ 𝑦 ∈ ( 𝑋 supp 0 ) ) ) |
77 |
76
|
ifbid |
⊢ ( 𝑤 = ( 𝑋 supp 0 ) → if ( 𝑦 ∈ 𝑤 , ( 𝑋 ‘ 𝑦 ) , 0 ) = if ( 𝑦 ∈ ( 𝑋 supp 0 ) , ( 𝑋 ‘ 𝑦 ) , 0 ) ) |
78 |
77
|
mpteq2dv |
⊢ ( 𝑤 = ( 𝑋 supp 0 ) → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑤 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ ( 𝑋 supp 0 ) , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) |
79 |
75 78
|
eqeq12d |
⊢ ( 𝑤 = ( 𝑋 supp 0 ) → ( ( 𝑃 Σg ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑤 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ↔ ( 𝑃 Σg ( 𝑘 ∈ ( 𝑋 supp 0 ) ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ ( 𝑋 supp 0 ) , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) ) |
80 |
73 79
|
imbi12d |
⊢ ( 𝑤 = ( 𝑋 supp 0 ) → ( ( 𝑤 ⊆ 𝐷 → ( 𝑃 Σg ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑤 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) ↔ ( ( 𝑋 supp 0 ) ⊆ 𝐷 → ( 𝑃 Σg ( 𝑘 ∈ ( 𝑋 supp 0 ) ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ ( 𝑋 supp 0 ) , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) ) ) |
81 |
80
|
imbi2d |
⊢ ( 𝑤 = ( 𝑋 supp 0 ) → ( ( 𝜑 → ( 𝑤 ⊆ 𝐷 → ( 𝑃 Σg ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑤 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) ) ↔ ( 𝜑 → ( ( 𝑋 supp 0 ) ⊆ 𝐷 → ( 𝑃 Σg ( 𝑘 ∈ ( 𝑋 supp 0 ) ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ ( 𝑋 supp 0 ) , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) ) ) ) |
82 |
|
ringgrp |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Grp ) |
83 |
8 82
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Grp ) |
84 |
1 2 3 44 5 83
|
mpl0 |
⊢ ( 𝜑 → ( 0g ‘ 𝑃 ) = ( 𝐷 × { 0 } ) ) |
85 |
|
fconstmpt |
⊢ ( 𝐷 × { 0 } ) = ( 𝑦 ∈ 𝐷 ↦ 0 ) |
86 |
84 85
|
eqtrdi |
⊢ ( 𝜑 → ( 0g ‘ 𝑃 ) = ( 𝑦 ∈ 𝐷 ↦ 0 ) ) |
87 |
86
|
a1d |
⊢ ( 𝜑 → ( ∅ ⊆ 𝐷 → ( 0g ‘ 𝑃 ) = ( 𝑦 ∈ 𝐷 ↦ 0 ) ) ) |
88 |
|
ssun1 |
⊢ 𝑥 ⊆ ( 𝑥 ∪ { 𝑧 } ) |
89 |
|
sstr2 |
⊢ ( 𝑥 ⊆ ( 𝑥 ∪ { 𝑧 } ) → ( ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 → 𝑥 ⊆ 𝐷 ) ) |
90 |
88 89
|
ax-mp |
⊢ ( ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 → 𝑥 ⊆ 𝐷 ) |
91 |
90
|
imim1i |
⊢ ( ( 𝑥 ⊆ 𝐷 → ( 𝑃 Σg ( 𝑘 ∈ 𝑥 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) → ( ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 → ( 𝑃 Σg ( 𝑘 ∈ 𝑥 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) ) |
92 |
|
oveq1 |
⊢ ( ( 𝑃 Σg ( 𝑘 ∈ 𝑥 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) → ( ( 𝑃 Σg ( 𝑘 ∈ 𝑥 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) ( +g ‘ 𝑃 ) ( ( 𝑋 ‘ 𝑧 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑧 , 1 , 0 ) ) ) ) = ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ( +g ‘ 𝑃 ) ( ( 𝑋 ‘ 𝑧 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑧 , 1 , 0 ) ) ) ) ) |
93 |
|
eqid |
⊢ ( +g ‘ 𝑃 ) = ( +g ‘ 𝑃 ) |
94 |
1
|
mplring |
⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝑅 ∈ Ring ) → 𝑃 ∈ Ring ) |
95 |
5 8 94
|
syl2anc |
⊢ ( 𝜑 → 𝑃 ∈ Ring ) |
96 |
|
ringcmn |
⊢ ( 𝑃 ∈ Ring → 𝑃 ∈ CMnd ) |
97 |
95 96
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ CMnd ) |
98 |
97
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → 𝑃 ∈ CMnd ) |
99 |
|
simprll |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → 𝑥 ∈ Fin ) |
100 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) |
101 |
100
|
unssad |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → 𝑥 ⊆ 𝐷 ) |
102 |
101
|
sselda |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑘 ∈ 𝑥 ) → 𝑘 ∈ 𝐷 ) |
103 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → 𝐼 ∈ 𝑊 ) |
104 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → 𝑅 ∈ Ring ) |
105 |
1
|
mpllmod |
⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝑅 ∈ Ring ) → 𝑃 ∈ LMod ) |
106 |
103 104 105
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → 𝑃 ∈ LMod ) |
107 |
11
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → ( 𝑋 ‘ 𝑘 ) ∈ ( Base ‘ 𝑅 ) ) |
108 |
1 5 8
|
mplsca |
⊢ ( 𝜑 → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
109 |
108
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
110 |
109
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
111 |
107 110
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → ( 𝑋 ‘ 𝑘 ) ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
112 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → 𝑘 ∈ 𝐷 ) |
113 |
1 6 3 4 2 103 104 112
|
mplmon |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ∈ 𝐵 ) |
114 |
|
eqid |
⊢ ( Scalar ‘ 𝑃 ) = ( Scalar ‘ 𝑃 ) |
115 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑃 ) ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) |
116 |
6 114 7 115
|
lmodvscl |
⊢ ( ( 𝑃 ∈ LMod ∧ ( 𝑋 ‘ 𝑘 ) ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ∈ 𝐵 ) → ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ∈ 𝐵 ) |
117 |
106 111 113 116
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ∈ 𝐵 ) |
118 |
117
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑘 ∈ 𝐷 ) → ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ∈ 𝐵 ) |
119 |
102 118
|
syldan |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑘 ∈ 𝑥 ) → ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ∈ 𝐵 ) |
120 |
|
vex |
⊢ 𝑧 ∈ V |
121 |
120
|
a1i |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → 𝑧 ∈ V ) |
122 |
|
simprlr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → ¬ 𝑧 ∈ 𝑥 ) |
123 |
5 8 105
|
syl2anc |
⊢ ( 𝜑 → 𝑃 ∈ LMod ) |
124 |
123
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → 𝑃 ∈ LMod ) |
125 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → 𝑋 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
126 |
100
|
unssbd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → { 𝑧 } ⊆ 𝐷 ) |
127 |
120
|
snss |
⊢ ( 𝑧 ∈ 𝐷 ↔ { 𝑧 } ⊆ 𝐷 ) |
128 |
126 127
|
sylibr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → 𝑧 ∈ 𝐷 ) |
129 |
125 128
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → ( 𝑋 ‘ 𝑧 ) ∈ ( Base ‘ 𝑅 ) ) |
130 |
108
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
131 |
130
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
132 |
129 131
|
eleqtrd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → ( 𝑋 ‘ 𝑧 ) ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
133 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → 𝐼 ∈ 𝑊 ) |
134 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → 𝑅 ∈ Ring ) |
135 |
1 6 3 4 2 133 134 128
|
mplmon |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑧 , 1 , 0 ) ) ∈ 𝐵 ) |
136 |
6 114 7 115
|
lmodvscl |
⊢ ( ( 𝑃 ∈ LMod ∧ ( 𝑋 ‘ 𝑧 ) ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑧 , 1 , 0 ) ) ∈ 𝐵 ) → ( ( 𝑋 ‘ 𝑧 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑧 , 1 , 0 ) ) ) ∈ 𝐵 ) |
137 |
124 132 135 136
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → ( ( 𝑋 ‘ 𝑧 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑧 , 1 , 0 ) ) ) ∈ 𝐵 ) |
138 |
|
fveq2 |
⊢ ( 𝑘 = 𝑧 → ( 𝑋 ‘ 𝑘 ) = ( 𝑋 ‘ 𝑧 ) ) |
139 |
|
equequ2 |
⊢ ( 𝑘 = 𝑧 → ( 𝑦 = 𝑘 ↔ 𝑦 = 𝑧 ) ) |
140 |
139
|
ifbid |
⊢ ( 𝑘 = 𝑧 → if ( 𝑦 = 𝑘 , 1 , 0 ) = if ( 𝑦 = 𝑧 , 1 , 0 ) ) |
141 |
140
|
mpteq2dv |
⊢ ( 𝑘 = 𝑧 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑧 , 1 , 0 ) ) ) |
142 |
138 141
|
oveq12d |
⊢ ( 𝑘 = 𝑧 → ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) = ( ( 𝑋 ‘ 𝑧 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑧 , 1 , 0 ) ) ) ) |
143 |
6 93 98 99 119 121 122 137 142
|
gsumunsn |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → ( 𝑃 Σg ( 𝑘 ∈ ( 𝑥 ∪ { 𝑧 } ) ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( ( 𝑃 Σg ( 𝑘 ∈ 𝑥 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) ( +g ‘ 𝑃 ) ( ( 𝑋 ‘ 𝑧 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑧 , 1 , 0 ) ) ) ) ) |
144 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
145 |
125
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) → ( 𝑋 ‘ 𝑦 ) ∈ ( Base ‘ 𝑅 ) ) |
146 |
10 3
|
ring0cl |
⊢ ( 𝑅 ∈ Ring → 0 ∈ ( Base ‘ 𝑅 ) ) |
147 |
8 146
|
syl |
⊢ ( 𝜑 → 0 ∈ ( Base ‘ 𝑅 ) ) |
148 |
147
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) → 0 ∈ ( Base ‘ 𝑅 ) ) |
149 |
145 148
|
ifcld |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) → if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ∈ ( Base ‘ 𝑅 ) ) |
150 |
149
|
fmpttd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
151 |
|
fvex |
⊢ ( Base ‘ 𝑅 ) ∈ V |
152 |
151 18
|
elmap |
⊢ ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐷 ) ↔ ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
153 |
150 152
|
sylibr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐷 ) ) |
154 |
33 10 2 34 133
|
psrbas |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( ( Base ‘ 𝑅 ) ↑m 𝐷 ) ) |
155 |
153 154
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ) |
156 |
18
|
mptex |
⊢ ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ∈ V |
157 |
|
funmpt |
⊢ Fun ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) |
158 |
156 157 20
|
3pm3.2i |
⊢ ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ∈ V ∧ Fun ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ∧ 0 ∈ V ) |
159 |
158
|
a1i |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ∈ V ∧ Fun ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ∧ 0 ∈ V ) ) |
160 |
|
eldifn |
⊢ ( 𝑦 ∈ ( 𝐷 ∖ 𝑥 ) → ¬ 𝑦 ∈ 𝑥 ) |
161 |
160
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ ( 𝐷 ∖ 𝑥 ) ) → ¬ 𝑦 ∈ 𝑥 ) |
162 |
161
|
iffalsed |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ ( 𝐷 ∖ 𝑥 ) ) → if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) = 0 ) |
163 |
18
|
a1i |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → 𝐷 ∈ V ) |
164 |
162 163
|
suppss2 |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) supp 0 ) ⊆ 𝑥 ) |
165 |
|
suppssfifsupp |
⊢ ( ( ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ∈ V ∧ Fun ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ∧ 0 ∈ V ) ∧ ( 𝑥 ∈ Fin ∧ ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) supp 0 ) ⊆ 𝑥 ) ) → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) finSupp 0 ) |
166 |
159 99 164 165
|
syl12anc |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) finSupp 0 ) |
167 |
1 33 34 3 6
|
mplelbas |
⊢ ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ∈ 𝐵 ↔ ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ∧ ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) finSupp 0 ) ) |
168 |
155 166 167
|
sylanbrc |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ∈ 𝐵 ) |
169 |
1 6 144 93 168 137
|
mpladd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ( +g ‘ 𝑃 ) ( ( 𝑋 ‘ 𝑧 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑧 , 1 , 0 ) ) ) ) = ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ∘f ( +g ‘ 𝑅 ) ( ( 𝑋 ‘ 𝑧 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑧 , 1 , 0 ) ) ) ) ) |
170 |
|
ovexd |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) → ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) if ( 𝑦 = 𝑧 , 1 , 0 ) ) ∈ V ) |
171 |
|
eqidd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) |
172 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
173 |
1 7 10 6 172 2 129 135
|
mplvsca |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → ( ( 𝑋 ‘ 𝑧 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑧 , 1 , 0 ) ) ) = ( ( 𝐷 × { ( 𝑋 ‘ 𝑧 ) } ) ∘f ( .r ‘ 𝑅 ) ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑧 , 1 , 0 ) ) ) ) |
174 |
129
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) → ( 𝑋 ‘ 𝑧 ) ∈ ( Base ‘ 𝑅 ) ) |
175 |
10 4
|
ringidcl |
⊢ ( 𝑅 ∈ Ring → 1 ∈ ( Base ‘ 𝑅 ) ) |
176 |
175 146
|
ifcld |
⊢ ( 𝑅 ∈ Ring → if ( 𝑦 = 𝑧 , 1 , 0 ) ∈ ( Base ‘ 𝑅 ) ) |
177 |
8 176
|
syl |
⊢ ( 𝜑 → if ( 𝑦 = 𝑧 , 1 , 0 ) ∈ ( Base ‘ 𝑅 ) ) |
178 |
177
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) → if ( 𝑦 = 𝑧 , 1 , 0 ) ∈ ( Base ‘ 𝑅 ) ) |
179 |
|
fconstmpt |
⊢ ( 𝐷 × { ( 𝑋 ‘ 𝑧 ) } ) = ( 𝑦 ∈ 𝐷 ↦ ( 𝑋 ‘ 𝑧 ) ) |
180 |
179
|
a1i |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → ( 𝐷 × { ( 𝑋 ‘ 𝑧 ) } ) = ( 𝑦 ∈ 𝐷 ↦ ( 𝑋 ‘ 𝑧 ) ) ) |
181 |
|
eqidd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑧 , 1 , 0 ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑧 , 1 , 0 ) ) ) |
182 |
163 174 178 180 181
|
offval2 |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → ( ( 𝐷 × { ( 𝑋 ‘ 𝑧 ) } ) ∘f ( .r ‘ 𝑅 ) ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑧 , 1 , 0 ) ) ) = ( 𝑦 ∈ 𝐷 ↦ ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) if ( 𝑦 = 𝑧 , 1 , 0 ) ) ) ) |
183 |
173 182
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → ( ( 𝑋 ‘ 𝑧 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑧 , 1 , 0 ) ) ) = ( 𝑦 ∈ 𝐷 ↦ ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) if ( 𝑦 = 𝑧 , 1 , 0 ) ) ) ) |
184 |
163 149 170 171 183
|
offval2 |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ∘f ( +g ‘ 𝑅 ) ( ( 𝑋 ‘ 𝑧 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑧 , 1 , 0 ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ ( if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ( +g ‘ 𝑅 ) ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) if ( 𝑦 = 𝑧 , 1 , 0 ) ) ) ) ) |
185 |
134 82
|
syl |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → 𝑅 ∈ Grp ) |
186 |
10 144 3
|
grplid |
⊢ ( ( 𝑅 ∈ Grp ∧ ( 𝑋 ‘ 𝑧 ) ∈ ( Base ‘ 𝑅 ) ) → ( 0 ( +g ‘ 𝑅 ) ( 𝑋 ‘ 𝑧 ) ) = ( 𝑋 ‘ 𝑧 ) ) |
187 |
185 129 186
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → ( 0 ( +g ‘ 𝑅 ) ( 𝑋 ‘ 𝑧 ) ) = ( 𝑋 ‘ 𝑧 ) ) |
188 |
187
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑦 ∈ { 𝑧 } ) → ( 0 ( +g ‘ 𝑅 ) ( 𝑋 ‘ 𝑧 ) ) = ( 𝑋 ‘ 𝑧 ) ) |
189 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑦 ∈ { 𝑧 } ) → 𝑦 ∈ { 𝑧 } ) |
190 |
|
velsn |
⊢ ( 𝑦 ∈ { 𝑧 } ↔ 𝑦 = 𝑧 ) |
191 |
189 190
|
sylib |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑦 ∈ { 𝑧 } ) → 𝑦 = 𝑧 ) |
192 |
191
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑦 ∈ { 𝑧 } ) → ( 𝑋 ‘ 𝑦 ) = ( 𝑋 ‘ 𝑧 ) ) |
193 |
188 192
|
eqtr4d |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑦 ∈ { 𝑧 } ) → ( 0 ( +g ‘ 𝑅 ) ( 𝑋 ‘ 𝑧 ) ) = ( 𝑋 ‘ 𝑦 ) ) |
194 |
122
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑦 ∈ { 𝑧 } ) → ¬ 𝑧 ∈ 𝑥 ) |
195 |
191 194
|
eqneltrd |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑦 ∈ { 𝑧 } ) → ¬ 𝑦 ∈ 𝑥 ) |
196 |
195
|
iffalsed |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑦 ∈ { 𝑧 } ) → if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) = 0 ) |
197 |
191
|
iftrued |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑦 ∈ { 𝑧 } ) → if ( 𝑦 = 𝑧 , 1 , 0 ) = 1 ) |
198 |
197
|
oveq2d |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑦 ∈ { 𝑧 } ) → ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) if ( 𝑦 = 𝑧 , 1 , 0 ) ) = ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) 1 ) ) |
199 |
10 172 4
|
ringridm |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ‘ 𝑧 ) ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) 1 ) = ( 𝑋 ‘ 𝑧 ) ) |
200 |
134 129 199
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) 1 ) = ( 𝑋 ‘ 𝑧 ) ) |
201 |
200
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑦 ∈ { 𝑧 } ) → ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) 1 ) = ( 𝑋 ‘ 𝑧 ) ) |
202 |
198 201
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑦 ∈ { 𝑧 } ) → ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) if ( 𝑦 = 𝑧 , 1 , 0 ) ) = ( 𝑋 ‘ 𝑧 ) ) |
203 |
196 202
|
oveq12d |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑦 ∈ { 𝑧 } ) → ( if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ( +g ‘ 𝑅 ) ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) if ( 𝑦 = 𝑧 , 1 , 0 ) ) ) = ( 0 ( +g ‘ 𝑅 ) ( 𝑋 ‘ 𝑧 ) ) ) |
204 |
|
elun2 |
⊢ ( 𝑦 ∈ { 𝑧 } → 𝑦 ∈ ( 𝑥 ∪ { 𝑧 } ) ) |
205 |
204
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑦 ∈ { 𝑧 } ) → 𝑦 ∈ ( 𝑥 ∪ { 𝑧 } ) ) |
206 |
205
|
iftrued |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑦 ∈ { 𝑧 } ) → if ( 𝑦 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑋 ‘ 𝑦 ) , 0 ) = ( 𝑋 ‘ 𝑦 ) ) |
207 |
193 203 206
|
3eqtr4d |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑦 ∈ { 𝑧 } ) → ( if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ( +g ‘ 𝑅 ) ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) if ( 𝑦 = 𝑧 , 1 , 0 ) ) ) = if ( 𝑦 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑋 ‘ 𝑦 ) , 0 ) ) |
208 |
83
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) → 𝑅 ∈ Grp ) |
209 |
10 144 3
|
grprid |
⊢ ( ( 𝑅 ∈ Grp ∧ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ∈ ( Base ‘ 𝑅 ) ) → ( if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ( +g ‘ 𝑅 ) 0 ) = if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) |
210 |
208 149 209
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) → ( if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ( +g ‘ 𝑅 ) 0 ) = if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) |
211 |
210
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) ∧ ¬ 𝑦 ∈ { 𝑧 } ) → ( if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ( +g ‘ 𝑅 ) 0 ) = if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) |
212 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) ∧ ¬ 𝑦 ∈ { 𝑧 } ) → ¬ 𝑦 ∈ { 𝑧 } ) |
213 |
212 190
|
sylnib |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) ∧ ¬ 𝑦 ∈ { 𝑧 } ) → ¬ 𝑦 = 𝑧 ) |
214 |
213
|
iffalsed |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) ∧ ¬ 𝑦 ∈ { 𝑧 } ) → if ( 𝑦 = 𝑧 , 1 , 0 ) = 0 ) |
215 |
214
|
oveq2d |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) ∧ ¬ 𝑦 ∈ { 𝑧 } ) → ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) if ( 𝑦 = 𝑧 , 1 , 0 ) ) = ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) 0 ) ) |
216 |
10 172 3
|
ringrz |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ‘ 𝑧 ) ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) 0 ) = 0 ) |
217 |
134 129 216
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) 0 ) = 0 ) |
218 |
217
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) ∧ ¬ 𝑦 ∈ { 𝑧 } ) → ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) 0 ) = 0 ) |
219 |
215 218
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) ∧ ¬ 𝑦 ∈ { 𝑧 } ) → ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) if ( 𝑦 = 𝑧 , 1 , 0 ) ) = 0 ) |
220 |
219
|
oveq2d |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) ∧ ¬ 𝑦 ∈ { 𝑧 } ) → ( if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ( +g ‘ 𝑅 ) ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) if ( 𝑦 = 𝑧 , 1 , 0 ) ) ) = ( if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ( +g ‘ 𝑅 ) 0 ) ) |
221 |
|
elun |
⊢ ( 𝑦 ∈ ( 𝑥 ∪ { 𝑧 } ) ↔ ( 𝑦 ∈ 𝑥 ∨ 𝑦 ∈ { 𝑧 } ) ) |
222 |
|
orcom |
⊢ ( ( 𝑦 ∈ 𝑥 ∨ 𝑦 ∈ { 𝑧 } ) ↔ ( 𝑦 ∈ { 𝑧 } ∨ 𝑦 ∈ 𝑥 ) ) |
223 |
221 222
|
bitri |
⊢ ( 𝑦 ∈ ( 𝑥 ∪ { 𝑧 } ) ↔ ( 𝑦 ∈ { 𝑧 } ∨ 𝑦 ∈ 𝑥 ) ) |
224 |
|
biorf |
⊢ ( ¬ 𝑦 ∈ { 𝑧 } → ( 𝑦 ∈ 𝑥 ↔ ( 𝑦 ∈ { 𝑧 } ∨ 𝑦 ∈ 𝑥 ) ) ) |
225 |
223 224
|
bitr4id |
⊢ ( ¬ 𝑦 ∈ { 𝑧 } → ( 𝑦 ∈ ( 𝑥 ∪ { 𝑧 } ) ↔ 𝑦 ∈ 𝑥 ) ) |
226 |
225
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) ∧ ¬ 𝑦 ∈ { 𝑧 } ) → ( 𝑦 ∈ ( 𝑥 ∪ { 𝑧 } ) ↔ 𝑦 ∈ 𝑥 ) ) |
227 |
226
|
ifbid |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) ∧ ¬ 𝑦 ∈ { 𝑧 } ) → if ( 𝑦 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑋 ‘ 𝑦 ) , 0 ) = if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) |
228 |
211 220 227
|
3eqtr4d |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) ∧ ¬ 𝑦 ∈ { 𝑧 } ) → ( if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ( +g ‘ 𝑅 ) ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) if ( 𝑦 = 𝑧 , 1 , 0 ) ) ) = if ( 𝑦 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑋 ‘ 𝑦 ) , 0 ) ) |
229 |
207 228
|
pm2.61dan |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) → ( if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ( +g ‘ 𝑅 ) ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) if ( 𝑦 = 𝑧 , 1 , 0 ) ) ) = if ( 𝑦 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑋 ‘ 𝑦 ) , 0 ) ) |
230 |
229
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → ( 𝑦 ∈ 𝐷 ↦ ( if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ( +g ‘ 𝑅 ) ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) if ( 𝑦 = 𝑧 , 1 , 0 ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) |
231 |
169 184 230
|
3eqtrrd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑋 ‘ 𝑦 ) , 0 ) ) = ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ( +g ‘ 𝑃 ) ( ( 𝑋 ‘ 𝑧 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑧 , 1 , 0 ) ) ) ) ) |
232 |
143 231
|
eqeq12d |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → ( ( 𝑃 Σg ( 𝑘 ∈ ( 𝑥 ∪ { 𝑧 } ) ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ↔ ( ( 𝑃 Σg ( 𝑘 ∈ 𝑥 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) ( +g ‘ 𝑃 ) ( ( 𝑋 ‘ 𝑧 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑧 , 1 , 0 ) ) ) ) = ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ( +g ‘ 𝑃 ) ( ( 𝑋 ‘ 𝑧 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑧 , 1 , 0 ) ) ) ) ) ) |
233 |
92 232
|
syl5ibr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → ( ( 𝑃 Σg ( 𝑘 ∈ 𝑥 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) → ( 𝑃 Σg ( 𝑘 ∈ ( 𝑥 ∪ { 𝑧 } ) ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) ) |
234 |
233
|
expr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ) → ( ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 → ( ( 𝑃 Σg ( 𝑘 ∈ 𝑥 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) → ( 𝑃 Σg ( 𝑘 ∈ ( 𝑥 ∪ { 𝑧 } ) ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) ) ) |
235 |
234
|
a2d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ) → ( ( ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 → ( 𝑃 Σg ( 𝑘 ∈ 𝑥 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) → ( ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 → ( 𝑃 Σg ( 𝑘 ∈ ( 𝑥 ∪ { 𝑧 } ) ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) ) ) |
236 |
91 235
|
syl5 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ) → ( ( 𝑥 ⊆ 𝐷 → ( 𝑃 Σg ( 𝑘 ∈ 𝑥 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) → ( ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 → ( 𝑃 Σg ( 𝑘 ∈ ( 𝑥 ∪ { 𝑧 } ) ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) ) ) |
237 |
236
|
expcom |
⊢ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) → ( 𝜑 → ( ( 𝑥 ⊆ 𝐷 → ( 𝑃 Σg ( 𝑘 ∈ 𝑥 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) → ( ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 → ( 𝑃 Σg ( 𝑘 ∈ ( 𝑥 ∪ { 𝑧 } ) ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) ) ) ) |
238 |
237
|
a2d |
⊢ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) → ( ( 𝜑 → ( 𝑥 ⊆ 𝐷 → ( 𝑃 Σg ( 𝑘 ∈ 𝑥 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) ) → ( 𝜑 → ( ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 → ( 𝑃 Σg ( 𝑘 ∈ ( 𝑥 ∪ { 𝑧 } ) ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) ) ) ) |
239 |
54 63 72 81 87 238
|
findcard2s |
⊢ ( ( 𝑋 supp 0 ) ∈ Fin → ( 𝜑 → ( ( 𝑋 supp 0 ) ⊆ 𝐷 → ( 𝑃 Σg ( 𝑘 ∈ ( 𝑋 supp 0 ) ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ ( 𝑋 supp 0 ) , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) ) ) |
240 |
38 239
|
mpcom |
⊢ ( 𝜑 → ( ( 𝑋 supp 0 ) ⊆ 𝐷 → ( 𝑃 Σg ( 𝑘 ∈ ( 𝑋 supp 0 ) ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ ( 𝑋 supp 0 ) , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) ) |
241 |
32 240
|
mpd |
⊢ ( 𝜑 → ( 𝑃 Σg ( 𝑘 ∈ ( 𝑋 supp 0 ) ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ ( 𝑋 supp 0 ) , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) |
242 |
30 241
|
eqtr4d |
⊢ ( 𝜑 → 𝑋 = ( 𝑃 Σg ( 𝑘 ∈ ( 𝑋 supp 0 ) ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) ) |
243 |
32
|
resmptd |
⊢ ( 𝜑 → ( ( 𝑘 ∈ 𝐷 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ↾ ( 𝑋 supp 0 ) ) = ( 𝑘 ∈ ( 𝑋 supp 0 ) ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) |
244 |
243
|
oveq2d |
⊢ ( 𝜑 → ( 𝑃 Σg ( ( 𝑘 ∈ 𝐷 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ↾ ( 𝑋 supp 0 ) ) ) = ( 𝑃 Σg ( 𝑘 ∈ ( 𝑋 supp 0 ) ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) ) |
245 |
117
|
fmpttd |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐷 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) : 𝐷 ⟶ 𝐵 ) |
246 |
11 16 19 21
|
suppssr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ ( 𝑋 supp 0 ) ) ) → ( 𝑋 ‘ 𝑘 ) = 0 ) |
247 |
246
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ ( 𝑋 supp 0 ) ) ) → ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) = ( 0 · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) |
248 |
|
eldifi |
⊢ ( 𝑘 ∈ ( 𝐷 ∖ ( 𝑋 supp 0 ) ) → 𝑘 ∈ 𝐷 ) |
249 |
109
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → ( 0g ‘ 𝑅 ) = ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ) |
250 |
3 249
|
eqtrid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → 0 = ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ) |
251 |
250
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → ( 0 · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) = ( ( 0g ‘ ( Scalar ‘ 𝑃 ) ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) |
252 |
|
eqid |
⊢ ( 0g ‘ ( Scalar ‘ 𝑃 ) ) = ( 0g ‘ ( Scalar ‘ 𝑃 ) ) |
253 |
6 114 7 252 44
|
lmod0vs |
⊢ ( ( 𝑃 ∈ LMod ∧ ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ∈ 𝐵 ) → ( ( 0g ‘ ( Scalar ‘ 𝑃 ) ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) = ( 0g ‘ 𝑃 ) ) |
254 |
106 113 253
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → ( ( 0g ‘ ( Scalar ‘ 𝑃 ) ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) = ( 0g ‘ 𝑃 ) ) |
255 |
251 254
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → ( 0 · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) = ( 0g ‘ 𝑃 ) ) |
256 |
248 255
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ ( 𝑋 supp 0 ) ) ) → ( 0 · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) = ( 0g ‘ 𝑃 ) ) |
257 |
247 256
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ ( 𝑋 supp 0 ) ) ) → ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) = ( 0g ‘ 𝑃 ) ) |
258 |
257 19
|
suppss2 |
⊢ ( 𝜑 → ( ( 𝑘 ∈ 𝐷 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) supp ( 0g ‘ 𝑃 ) ) ⊆ ( 𝑋 supp 0 ) ) |
259 |
18
|
mptex |
⊢ ( 𝑘 ∈ 𝐷 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ∈ V |
260 |
|
funmpt |
⊢ Fun ( 𝑘 ∈ 𝐷 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) |
261 |
|
fvex |
⊢ ( 0g ‘ 𝑃 ) ∈ V |
262 |
259 260 261
|
3pm3.2i |
⊢ ( ( 𝑘 ∈ 𝐷 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ∈ V ∧ Fun ( 𝑘 ∈ 𝐷 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ∧ ( 0g ‘ 𝑃 ) ∈ V ) |
263 |
262
|
a1i |
⊢ ( 𝜑 → ( ( 𝑘 ∈ 𝐷 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ∈ V ∧ Fun ( 𝑘 ∈ 𝐷 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ∧ ( 0g ‘ 𝑃 ) ∈ V ) ) |
264 |
|
suppssfifsupp |
⊢ ( ( ( ( 𝑘 ∈ 𝐷 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ∈ V ∧ Fun ( 𝑘 ∈ 𝐷 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ∧ ( 0g ‘ 𝑃 ) ∈ V ) ∧ ( ( 𝑋 supp 0 ) ∈ Fin ∧ ( ( 𝑘 ∈ 𝐷 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) supp ( 0g ‘ 𝑃 ) ) ⊆ ( 𝑋 supp 0 ) ) ) → ( 𝑘 ∈ 𝐷 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) finSupp ( 0g ‘ 𝑃 ) ) |
265 |
263 38 258 264
|
syl12anc |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐷 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) finSupp ( 0g ‘ 𝑃 ) ) |
266 |
6 44 97 19 245 258 265
|
gsumres |
⊢ ( 𝜑 → ( 𝑃 Σg ( ( 𝑘 ∈ 𝐷 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ↾ ( 𝑋 supp 0 ) ) ) = ( 𝑃 Σg ( 𝑘 ∈ 𝐷 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) ) |
267 |
244 266
|
eqtr3d |
⊢ ( 𝜑 → ( 𝑃 Σg ( 𝑘 ∈ ( 𝑋 supp 0 ) ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑃 Σg ( 𝑘 ∈ 𝐷 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) ) |
268 |
242 267
|
eqtrd |
⊢ ( 𝜑 → 𝑋 = ( 𝑃 Σg ( 𝑘 ∈ 𝐷 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) ) |