Step |
Hyp |
Ref |
Expression |
1 |
|
mplcoe1.p |
⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) |
2 |
|
mplcoe1.d |
⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } |
3 |
|
mplcoe1.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
4 |
|
mplcoe1.o |
⊢ 1 = ( 1r ‘ 𝑅 ) |
5 |
|
mplcoe1.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) |
6 |
|
mplcoe1.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
7 |
|
mplcoe1.n |
⊢ · = ( ·𝑠 ‘ 𝑃 ) |
8 |
|
mplcoe1.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
9 |
|
mplcoe1.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
10 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
11 |
1 10 6 2 9
|
mplelf |
⊢ ( 𝜑 → 𝑋 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
12 |
11
|
feqmptd |
⊢ ( 𝜑 → 𝑋 = ( 𝑦 ∈ 𝐷 ↦ ( 𝑋 ‘ 𝑦 ) ) ) |
13 |
|
iftrue |
⊢ ( 𝑦 ∈ ( 𝑋 supp 0 ) → if ( 𝑦 ∈ ( 𝑋 supp 0 ) , ( 𝑋 ‘ 𝑦 ) , 0 ) = ( 𝑋 ‘ 𝑦 ) ) |
14 |
13
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑦 ∈ ( 𝑋 supp 0 ) ) → if ( 𝑦 ∈ ( 𝑋 supp 0 ) , ( 𝑋 ‘ 𝑦 ) , 0 ) = ( 𝑋 ‘ 𝑦 ) ) |
15 |
|
eldif |
⊢ ( 𝑦 ∈ ( 𝐷 ∖ ( 𝑋 supp 0 ) ) ↔ ( 𝑦 ∈ 𝐷 ∧ ¬ 𝑦 ∈ ( 𝑋 supp 0 ) ) ) |
16 |
|
ssidd |
⊢ ( 𝜑 → ( 𝑋 supp 0 ) ⊆ ( 𝑋 supp 0 ) ) |
17 |
|
ovex |
⊢ ( ℕ0 ↑m 𝐼 ) ∈ V |
18 |
2 17
|
rabex2 |
⊢ 𝐷 ∈ V |
19 |
18
|
a1i |
⊢ ( 𝜑 → 𝐷 ∈ V ) |
20 |
3
|
fvexi |
⊢ 0 ∈ V |
21 |
20
|
a1i |
⊢ ( 𝜑 → 0 ∈ V ) |
22 |
11 16 19 21
|
suppssr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐷 ∖ ( 𝑋 supp 0 ) ) ) → ( 𝑋 ‘ 𝑦 ) = 0 ) |
23 |
22
|
ifeq2d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐷 ∖ ( 𝑋 supp 0 ) ) ) → if ( 𝑦 ∈ ( 𝑋 supp 0 ) , ( 𝑋 ‘ 𝑦 ) , ( 𝑋 ‘ 𝑦 ) ) = if ( 𝑦 ∈ ( 𝑋 supp 0 ) , ( 𝑋 ‘ 𝑦 ) , 0 ) ) |
24 |
|
ifid |
⊢ if ( 𝑦 ∈ ( 𝑋 supp 0 ) , ( 𝑋 ‘ 𝑦 ) , ( 𝑋 ‘ 𝑦 ) ) = ( 𝑋 ‘ 𝑦 ) |
25 |
23 24
|
eqtr3di |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐷 ∖ ( 𝑋 supp 0 ) ) ) → if ( 𝑦 ∈ ( 𝑋 supp 0 ) , ( 𝑋 ‘ 𝑦 ) , 0 ) = ( 𝑋 ‘ 𝑦 ) ) |
26 |
15 25
|
sylan2br |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐷 ∧ ¬ 𝑦 ∈ ( 𝑋 supp 0 ) ) ) → if ( 𝑦 ∈ ( 𝑋 supp 0 ) , ( 𝑋 ‘ 𝑦 ) , 0 ) = ( 𝑋 ‘ 𝑦 ) ) |
27 |
26
|
anassrs |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) ∧ ¬ 𝑦 ∈ ( 𝑋 supp 0 ) ) → if ( 𝑦 ∈ ( 𝑋 supp 0 ) , ( 𝑋 ‘ 𝑦 ) , 0 ) = ( 𝑋 ‘ 𝑦 ) ) |
28 |
14 27
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → if ( 𝑦 ∈ ( 𝑋 supp 0 ) , ( 𝑋 ‘ 𝑦 ) , 0 ) = ( 𝑋 ‘ 𝑦 ) ) |
29 |
28
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ ( 𝑋 supp 0 ) , ( 𝑋 ‘ 𝑦 ) , 0 ) ) = ( 𝑦 ∈ 𝐷 ↦ ( 𝑋 ‘ 𝑦 ) ) ) |
30 |
12 29
|
eqtr4d |
⊢ ( 𝜑 → 𝑋 = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ ( 𝑋 supp 0 ) , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) |
31 |
|
suppssdm |
⊢ ( 𝑋 supp 0 ) ⊆ dom 𝑋 |
32 |
31 11
|
fssdm |
⊢ ( 𝜑 → ( 𝑋 supp 0 ) ⊆ 𝐷 ) |
33 |
|
eqid |
⊢ ( 𝐼 mPwSer 𝑅 ) = ( 𝐼 mPwSer 𝑅 ) |
34 |
|
eqid |
⊢ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) |
35 |
1 33 34 3 6
|
mplelbas |
⊢ ( 𝑋 ∈ 𝐵 ↔ ( 𝑋 ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ∧ 𝑋 finSupp 0 ) ) |
36 |
35
|
simprbi |
⊢ ( 𝑋 ∈ 𝐵 → 𝑋 finSupp 0 ) |
37 |
9 36
|
syl |
⊢ ( 𝜑 → 𝑋 finSupp 0 ) |
38 |
37
|
fsuppimpd |
⊢ ( 𝜑 → ( 𝑋 supp 0 ) ∈ Fin ) |
39 |
|
sseq1 |
⊢ ( 𝑤 = ∅ → ( 𝑤 ⊆ 𝐷 ↔ ∅ ⊆ 𝐷 ) ) |
40 |
|
mpteq1 |
⊢ ( 𝑤 = ∅ → ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) = ( 𝑘 ∈ ∅ ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) |
41 |
|
mpt0 |
⊢ ( 𝑘 ∈ ∅ ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) = ∅ |
42 |
40 41
|
eqtrdi |
⊢ ( 𝑤 = ∅ → ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) = ∅ ) |
43 |
42
|
oveq2d |
⊢ ( 𝑤 = ∅ → ( 𝑃 Σg ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑃 Σg ∅ ) ) |
44 |
|
eqid |
⊢ ( 0g ‘ 𝑃 ) = ( 0g ‘ 𝑃 ) |
45 |
44
|
gsum0 |
⊢ ( 𝑃 Σg ∅ ) = ( 0g ‘ 𝑃 ) |
46 |
43 45
|
eqtrdi |
⊢ ( 𝑤 = ∅ → ( 𝑃 Σg ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 0g ‘ 𝑃 ) ) |
47 |
|
noel |
⊢ ¬ 𝑦 ∈ ∅ |
48 |
|
eleq2 |
⊢ ( 𝑤 = ∅ → ( 𝑦 ∈ 𝑤 ↔ 𝑦 ∈ ∅ ) ) |
49 |
47 48
|
mtbiri |
⊢ ( 𝑤 = ∅ → ¬ 𝑦 ∈ 𝑤 ) |
50 |
49
|
iffalsed |
⊢ ( 𝑤 = ∅ → if ( 𝑦 ∈ 𝑤 , ( 𝑋 ‘ 𝑦 ) , 0 ) = 0 ) |
51 |
50
|
mpteq2dv |
⊢ ( 𝑤 = ∅ → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑤 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) = ( 𝑦 ∈ 𝐷 ↦ 0 ) ) |
52 |
46 51
|
eqeq12d |
⊢ ( 𝑤 = ∅ → ( ( 𝑃 Σg ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑤 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ↔ ( 0g ‘ 𝑃 ) = ( 𝑦 ∈ 𝐷 ↦ 0 ) ) ) |
53 |
39 52
|
imbi12d |
⊢ ( 𝑤 = ∅ → ( ( 𝑤 ⊆ 𝐷 → ( 𝑃 Σg ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑤 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) ↔ ( ∅ ⊆ 𝐷 → ( 0g ‘ 𝑃 ) = ( 𝑦 ∈ 𝐷 ↦ 0 ) ) ) ) |
54 |
53
|
imbi2d |
⊢ ( 𝑤 = ∅ → ( ( 𝜑 → ( 𝑤 ⊆ 𝐷 → ( 𝑃 Σg ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑤 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) ) ↔ ( 𝜑 → ( ∅ ⊆ 𝐷 → ( 0g ‘ 𝑃 ) = ( 𝑦 ∈ 𝐷 ↦ 0 ) ) ) ) ) |
55 |
|
sseq1 |
⊢ ( 𝑤 = 𝑥 → ( 𝑤 ⊆ 𝐷 ↔ 𝑥 ⊆ 𝐷 ) ) |
56 |
|
mpteq1 |
⊢ ( 𝑤 = 𝑥 → ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) = ( 𝑘 ∈ 𝑥 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) |
57 |
56
|
oveq2d |
⊢ ( 𝑤 = 𝑥 → ( 𝑃 Σg ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑃 Σg ( 𝑘 ∈ 𝑥 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) ) |
58 |
|
eleq2 |
⊢ ( 𝑤 = 𝑥 → ( 𝑦 ∈ 𝑤 ↔ 𝑦 ∈ 𝑥 ) ) |
59 |
58
|
ifbid |
⊢ ( 𝑤 = 𝑥 → if ( 𝑦 ∈ 𝑤 , ( 𝑋 ‘ 𝑦 ) , 0 ) = if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) |
60 |
59
|
mpteq2dv |
⊢ ( 𝑤 = 𝑥 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑤 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) |
61 |
57 60
|
eqeq12d |
⊢ ( 𝑤 = 𝑥 → ( ( 𝑃 Σg ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑤 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ↔ ( 𝑃 Σg ( 𝑘 ∈ 𝑥 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) ) |
62 |
55 61
|
imbi12d |
⊢ ( 𝑤 = 𝑥 → ( ( 𝑤 ⊆ 𝐷 → ( 𝑃 Σg ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑤 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) ↔ ( 𝑥 ⊆ 𝐷 → ( 𝑃 Σg ( 𝑘 ∈ 𝑥 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) ) ) |
63 |
62
|
imbi2d |
⊢ ( 𝑤 = 𝑥 → ( ( 𝜑 → ( 𝑤 ⊆ 𝐷 → ( 𝑃 Σg ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑤 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) ) ↔ ( 𝜑 → ( 𝑥 ⊆ 𝐷 → ( 𝑃 Σg ( 𝑘 ∈ 𝑥 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) ) ) ) |
64 |
|
sseq1 |
⊢ ( 𝑤 = ( 𝑥 ∪ { 𝑧 } ) → ( 𝑤 ⊆ 𝐷 ↔ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) |
65 |
|
mpteq1 |
⊢ ( 𝑤 = ( 𝑥 ∪ { 𝑧 } ) → ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) = ( 𝑘 ∈ ( 𝑥 ∪ { 𝑧 } ) ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) |
66 |
65
|
oveq2d |
⊢ ( 𝑤 = ( 𝑥 ∪ { 𝑧 } ) → ( 𝑃 Σg ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑃 Σg ( 𝑘 ∈ ( 𝑥 ∪ { 𝑧 } ) ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) ) |
67 |
|
eleq2 |
⊢ ( 𝑤 = ( 𝑥 ∪ { 𝑧 } ) → ( 𝑦 ∈ 𝑤 ↔ 𝑦 ∈ ( 𝑥 ∪ { 𝑧 } ) ) ) |
68 |
67
|
ifbid |
⊢ ( 𝑤 = ( 𝑥 ∪ { 𝑧 } ) → if ( 𝑦 ∈ 𝑤 , ( 𝑋 ‘ 𝑦 ) , 0 ) = if ( 𝑦 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑋 ‘ 𝑦 ) , 0 ) ) |
69 |
68
|
mpteq2dv |
⊢ ( 𝑤 = ( 𝑥 ∪ { 𝑧 } ) → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑤 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) |
70 |
66 69
|
eqeq12d |
⊢ ( 𝑤 = ( 𝑥 ∪ { 𝑧 } ) → ( ( 𝑃 Σg ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑤 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ↔ ( 𝑃 Σg ( 𝑘 ∈ ( 𝑥 ∪ { 𝑧 } ) ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) ) |
71 |
64 70
|
imbi12d |
⊢ ( 𝑤 = ( 𝑥 ∪ { 𝑧 } ) → ( ( 𝑤 ⊆ 𝐷 → ( 𝑃 Σg ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑤 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) ↔ ( ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 → ( 𝑃 Σg ( 𝑘 ∈ ( 𝑥 ∪ { 𝑧 } ) ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) ) ) |
72 |
71
|
imbi2d |
⊢ ( 𝑤 = ( 𝑥 ∪ { 𝑧 } ) → ( ( 𝜑 → ( 𝑤 ⊆ 𝐷 → ( 𝑃 Σg ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑤 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) ) ↔ ( 𝜑 → ( ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 → ( 𝑃 Σg ( 𝑘 ∈ ( 𝑥 ∪ { 𝑧 } ) ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) ) ) ) |
73 |
|
sseq1 |
⊢ ( 𝑤 = ( 𝑋 supp 0 ) → ( 𝑤 ⊆ 𝐷 ↔ ( 𝑋 supp 0 ) ⊆ 𝐷 ) ) |
74 |
|
mpteq1 |
⊢ ( 𝑤 = ( 𝑋 supp 0 ) → ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) = ( 𝑘 ∈ ( 𝑋 supp 0 ) ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) |
75 |
74
|
oveq2d |
⊢ ( 𝑤 = ( 𝑋 supp 0 ) → ( 𝑃 Σg ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑃 Σg ( 𝑘 ∈ ( 𝑋 supp 0 ) ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) ) |
76 |
|
eleq2 |
⊢ ( 𝑤 = ( 𝑋 supp 0 ) → ( 𝑦 ∈ 𝑤 ↔ 𝑦 ∈ ( 𝑋 supp 0 ) ) ) |
77 |
76
|
ifbid |
⊢ ( 𝑤 = ( 𝑋 supp 0 ) → if ( 𝑦 ∈ 𝑤 , ( 𝑋 ‘ 𝑦 ) , 0 ) = if ( 𝑦 ∈ ( 𝑋 supp 0 ) , ( 𝑋 ‘ 𝑦 ) , 0 ) ) |
78 |
77
|
mpteq2dv |
⊢ ( 𝑤 = ( 𝑋 supp 0 ) → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑤 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ ( 𝑋 supp 0 ) , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) |
79 |
75 78
|
eqeq12d |
⊢ ( 𝑤 = ( 𝑋 supp 0 ) → ( ( 𝑃 Σg ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑤 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ↔ ( 𝑃 Σg ( 𝑘 ∈ ( 𝑋 supp 0 ) ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ ( 𝑋 supp 0 ) , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) ) |
80 |
73 79
|
imbi12d |
⊢ ( 𝑤 = ( 𝑋 supp 0 ) → ( ( 𝑤 ⊆ 𝐷 → ( 𝑃 Σg ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑤 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) ↔ ( ( 𝑋 supp 0 ) ⊆ 𝐷 → ( 𝑃 Σg ( 𝑘 ∈ ( 𝑋 supp 0 ) ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ ( 𝑋 supp 0 ) , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) ) ) |
81 |
80
|
imbi2d |
⊢ ( 𝑤 = ( 𝑋 supp 0 ) → ( ( 𝜑 → ( 𝑤 ⊆ 𝐷 → ( 𝑃 Σg ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑤 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) ) ↔ ( 𝜑 → ( ( 𝑋 supp 0 ) ⊆ 𝐷 → ( 𝑃 Σg ( 𝑘 ∈ ( 𝑋 supp 0 ) ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ ( 𝑋 supp 0 ) , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) ) ) ) |
82 |
|
ringgrp |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Grp ) |
83 |
8 82
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Grp ) |
84 |
1 2 3 44 5 83
|
mpl0 |
⊢ ( 𝜑 → ( 0g ‘ 𝑃 ) = ( 𝐷 × { 0 } ) ) |
85 |
|
fconstmpt |
⊢ ( 𝐷 × { 0 } ) = ( 𝑦 ∈ 𝐷 ↦ 0 ) |
86 |
84 85
|
eqtrdi |
⊢ ( 𝜑 → ( 0g ‘ 𝑃 ) = ( 𝑦 ∈ 𝐷 ↦ 0 ) ) |
87 |
86
|
a1d |
⊢ ( 𝜑 → ( ∅ ⊆ 𝐷 → ( 0g ‘ 𝑃 ) = ( 𝑦 ∈ 𝐷 ↦ 0 ) ) ) |
88 |
|
ssun1 |
⊢ 𝑥 ⊆ ( 𝑥 ∪ { 𝑧 } ) |
89 |
|
sstr2 |
⊢ ( 𝑥 ⊆ ( 𝑥 ∪ { 𝑧 } ) → ( ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 → 𝑥 ⊆ 𝐷 ) ) |
90 |
88 89
|
ax-mp |
⊢ ( ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 → 𝑥 ⊆ 𝐷 ) |
91 |
90
|
imim1i |
⊢ ( ( 𝑥 ⊆ 𝐷 → ( 𝑃 Σg ( 𝑘 ∈ 𝑥 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) → ( ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 → ( 𝑃 Σg ( 𝑘 ∈ 𝑥 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) ) |
92 |
|
oveq1 |
⊢ ( ( 𝑃 Σg ( 𝑘 ∈ 𝑥 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) → ( ( 𝑃 Σg ( 𝑘 ∈ 𝑥 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) ( +g ‘ 𝑃 ) ( ( 𝑋 ‘ 𝑧 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑧 , 1 , 0 ) ) ) ) = ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ( +g ‘ 𝑃 ) ( ( 𝑋 ‘ 𝑧 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑧 , 1 , 0 ) ) ) ) ) |
93 |
|
eqid |
⊢ ( +g ‘ 𝑃 ) = ( +g ‘ 𝑃 ) |
94 |
1 5 8
|
mplringd |
⊢ ( 𝜑 → 𝑃 ∈ Ring ) |
95 |
|
ringcmn |
⊢ ( 𝑃 ∈ Ring → 𝑃 ∈ CMnd ) |
96 |
94 95
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ CMnd ) |
97 |
96
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → 𝑃 ∈ CMnd ) |
98 |
|
simprll |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → 𝑥 ∈ Fin ) |
99 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) |
100 |
99
|
unssad |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → 𝑥 ⊆ 𝐷 ) |
101 |
100
|
sselda |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑘 ∈ 𝑥 ) → 𝑘 ∈ 𝐷 ) |
102 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → 𝐼 ∈ 𝑊 ) |
103 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → 𝑅 ∈ Ring ) |
104 |
1 102 103
|
mpllmodd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → 𝑃 ∈ LMod ) |
105 |
11
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → ( 𝑋 ‘ 𝑘 ) ∈ ( Base ‘ 𝑅 ) ) |
106 |
1 5 8
|
mplsca |
⊢ ( 𝜑 → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
107 |
106
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
108 |
107
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
109 |
105 108
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → ( 𝑋 ‘ 𝑘 ) ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
110 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → 𝑘 ∈ 𝐷 ) |
111 |
1 6 3 4 2 102 103 110
|
mplmon |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ∈ 𝐵 ) |
112 |
|
eqid |
⊢ ( Scalar ‘ 𝑃 ) = ( Scalar ‘ 𝑃 ) |
113 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑃 ) ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) |
114 |
6 112 7 113
|
lmodvscl |
⊢ ( ( 𝑃 ∈ LMod ∧ ( 𝑋 ‘ 𝑘 ) ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ∈ 𝐵 ) → ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ∈ 𝐵 ) |
115 |
104 109 111 114
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ∈ 𝐵 ) |
116 |
115
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑘 ∈ 𝐷 ) → ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ∈ 𝐵 ) |
117 |
101 116
|
syldan |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑘 ∈ 𝑥 ) → ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ∈ 𝐵 ) |
118 |
|
vex |
⊢ 𝑧 ∈ V |
119 |
118
|
a1i |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → 𝑧 ∈ V ) |
120 |
|
simprlr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → ¬ 𝑧 ∈ 𝑥 ) |
121 |
1 5 8
|
mpllmodd |
⊢ ( 𝜑 → 𝑃 ∈ LMod ) |
122 |
121
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → 𝑃 ∈ LMod ) |
123 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → 𝑋 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
124 |
99
|
unssbd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → { 𝑧 } ⊆ 𝐷 ) |
125 |
118
|
snss |
⊢ ( 𝑧 ∈ 𝐷 ↔ { 𝑧 } ⊆ 𝐷 ) |
126 |
124 125
|
sylibr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → 𝑧 ∈ 𝐷 ) |
127 |
123 126
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → ( 𝑋 ‘ 𝑧 ) ∈ ( Base ‘ 𝑅 ) ) |
128 |
106
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
129 |
128
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
130 |
127 129
|
eleqtrd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → ( 𝑋 ‘ 𝑧 ) ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
131 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → 𝐼 ∈ 𝑊 ) |
132 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → 𝑅 ∈ Ring ) |
133 |
1 6 3 4 2 131 132 126
|
mplmon |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑧 , 1 , 0 ) ) ∈ 𝐵 ) |
134 |
6 112 7 113
|
lmodvscl |
⊢ ( ( 𝑃 ∈ LMod ∧ ( 𝑋 ‘ 𝑧 ) ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑧 , 1 , 0 ) ) ∈ 𝐵 ) → ( ( 𝑋 ‘ 𝑧 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑧 , 1 , 0 ) ) ) ∈ 𝐵 ) |
135 |
122 130 133 134
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → ( ( 𝑋 ‘ 𝑧 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑧 , 1 , 0 ) ) ) ∈ 𝐵 ) |
136 |
|
fveq2 |
⊢ ( 𝑘 = 𝑧 → ( 𝑋 ‘ 𝑘 ) = ( 𝑋 ‘ 𝑧 ) ) |
137 |
|
equequ2 |
⊢ ( 𝑘 = 𝑧 → ( 𝑦 = 𝑘 ↔ 𝑦 = 𝑧 ) ) |
138 |
137
|
ifbid |
⊢ ( 𝑘 = 𝑧 → if ( 𝑦 = 𝑘 , 1 , 0 ) = if ( 𝑦 = 𝑧 , 1 , 0 ) ) |
139 |
138
|
mpteq2dv |
⊢ ( 𝑘 = 𝑧 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑧 , 1 , 0 ) ) ) |
140 |
136 139
|
oveq12d |
⊢ ( 𝑘 = 𝑧 → ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) = ( ( 𝑋 ‘ 𝑧 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑧 , 1 , 0 ) ) ) ) |
141 |
6 93 97 98 117 119 120 135 140
|
gsumunsn |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → ( 𝑃 Σg ( 𝑘 ∈ ( 𝑥 ∪ { 𝑧 } ) ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( ( 𝑃 Σg ( 𝑘 ∈ 𝑥 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) ( +g ‘ 𝑃 ) ( ( 𝑋 ‘ 𝑧 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑧 , 1 , 0 ) ) ) ) ) |
142 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
143 |
123
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) → ( 𝑋 ‘ 𝑦 ) ∈ ( Base ‘ 𝑅 ) ) |
144 |
10 3
|
ring0cl |
⊢ ( 𝑅 ∈ Ring → 0 ∈ ( Base ‘ 𝑅 ) ) |
145 |
8 144
|
syl |
⊢ ( 𝜑 → 0 ∈ ( Base ‘ 𝑅 ) ) |
146 |
145
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) → 0 ∈ ( Base ‘ 𝑅 ) ) |
147 |
143 146
|
ifcld |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) → if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ∈ ( Base ‘ 𝑅 ) ) |
148 |
147
|
fmpttd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
149 |
|
fvex |
⊢ ( Base ‘ 𝑅 ) ∈ V |
150 |
149 18
|
elmap |
⊢ ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐷 ) ↔ ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
151 |
148 150
|
sylibr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐷 ) ) |
152 |
33 10 2 34 131
|
psrbas |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( ( Base ‘ 𝑅 ) ↑m 𝐷 ) ) |
153 |
151 152
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ) |
154 |
18
|
mptex |
⊢ ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ∈ V |
155 |
|
funmpt |
⊢ Fun ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) |
156 |
154 155 20
|
3pm3.2i |
⊢ ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ∈ V ∧ Fun ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ∧ 0 ∈ V ) |
157 |
156
|
a1i |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ∈ V ∧ Fun ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ∧ 0 ∈ V ) ) |
158 |
|
eldifn |
⊢ ( 𝑦 ∈ ( 𝐷 ∖ 𝑥 ) → ¬ 𝑦 ∈ 𝑥 ) |
159 |
158
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ ( 𝐷 ∖ 𝑥 ) ) → ¬ 𝑦 ∈ 𝑥 ) |
160 |
159
|
iffalsed |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ ( 𝐷 ∖ 𝑥 ) ) → if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) = 0 ) |
161 |
18
|
a1i |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → 𝐷 ∈ V ) |
162 |
160 161
|
suppss2 |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) supp 0 ) ⊆ 𝑥 ) |
163 |
|
suppssfifsupp |
⊢ ( ( ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ∈ V ∧ Fun ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ∧ 0 ∈ V ) ∧ ( 𝑥 ∈ Fin ∧ ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) supp 0 ) ⊆ 𝑥 ) ) → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) finSupp 0 ) |
164 |
157 98 162 163
|
syl12anc |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) finSupp 0 ) |
165 |
1 33 34 3 6
|
mplelbas |
⊢ ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ∈ 𝐵 ↔ ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ∧ ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) finSupp 0 ) ) |
166 |
153 164 165
|
sylanbrc |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ∈ 𝐵 ) |
167 |
1 6 142 93 166 135
|
mpladd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ( +g ‘ 𝑃 ) ( ( 𝑋 ‘ 𝑧 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑧 , 1 , 0 ) ) ) ) = ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ∘f ( +g ‘ 𝑅 ) ( ( 𝑋 ‘ 𝑧 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑧 , 1 , 0 ) ) ) ) ) |
168 |
|
ovexd |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) → ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) if ( 𝑦 = 𝑧 , 1 , 0 ) ) ∈ V ) |
169 |
|
eqidd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) |
170 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
171 |
1 7 10 6 170 2 127 133
|
mplvsca |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → ( ( 𝑋 ‘ 𝑧 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑧 , 1 , 0 ) ) ) = ( ( 𝐷 × { ( 𝑋 ‘ 𝑧 ) } ) ∘f ( .r ‘ 𝑅 ) ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑧 , 1 , 0 ) ) ) ) |
172 |
127
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) → ( 𝑋 ‘ 𝑧 ) ∈ ( Base ‘ 𝑅 ) ) |
173 |
10 4
|
ringidcl |
⊢ ( 𝑅 ∈ Ring → 1 ∈ ( Base ‘ 𝑅 ) ) |
174 |
173 144
|
ifcld |
⊢ ( 𝑅 ∈ Ring → if ( 𝑦 = 𝑧 , 1 , 0 ) ∈ ( Base ‘ 𝑅 ) ) |
175 |
8 174
|
syl |
⊢ ( 𝜑 → if ( 𝑦 = 𝑧 , 1 , 0 ) ∈ ( Base ‘ 𝑅 ) ) |
176 |
175
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) → if ( 𝑦 = 𝑧 , 1 , 0 ) ∈ ( Base ‘ 𝑅 ) ) |
177 |
|
fconstmpt |
⊢ ( 𝐷 × { ( 𝑋 ‘ 𝑧 ) } ) = ( 𝑦 ∈ 𝐷 ↦ ( 𝑋 ‘ 𝑧 ) ) |
178 |
177
|
a1i |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → ( 𝐷 × { ( 𝑋 ‘ 𝑧 ) } ) = ( 𝑦 ∈ 𝐷 ↦ ( 𝑋 ‘ 𝑧 ) ) ) |
179 |
|
eqidd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑧 , 1 , 0 ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑧 , 1 , 0 ) ) ) |
180 |
161 172 176 178 179
|
offval2 |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → ( ( 𝐷 × { ( 𝑋 ‘ 𝑧 ) } ) ∘f ( .r ‘ 𝑅 ) ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑧 , 1 , 0 ) ) ) = ( 𝑦 ∈ 𝐷 ↦ ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) if ( 𝑦 = 𝑧 , 1 , 0 ) ) ) ) |
181 |
171 180
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → ( ( 𝑋 ‘ 𝑧 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑧 , 1 , 0 ) ) ) = ( 𝑦 ∈ 𝐷 ↦ ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) if ( 𝑦 = 𝑧 , 1 , 0 ) ) ) ) |
182 |
161 147 168 169 181
|
offval2 |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ∘f ( +g ‘ 𝑅 ) ( ( 𝑋 ‘ 𝑧 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑧 , 1 , 0 ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ ( if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ( +g ‘ 𝑅 ) ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) if ( 𝑦 = 𝑧 , 1 , 0 ) ) ) ) ) |
183 |
132 82
|
syl |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → 𝑅 ∈ Grp ) |
184 |
10 142 3
|
grplid |
⊢ ( ( 𝑅 ∈ Grp ∧ ( 𝑋 ‘ 𝑧 ) ∈ ( Base ‘ 𝑅 ) ) → ( 0 ( +g ‘ 𝑅 ) ( 𝑋 ‘ 𝑧 ) ) = ( 𝑋 ‘ 𝑧 ) ) |
185 |
183 127 184
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → ( 0 ( +g ‘ 𝑅 ) ( 𝑋 ‘ 𝑧 ) ) = ( 𝑋 ‘ 𝑧 ) ) |
186 |
185
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑦 ∈ { 𝑧 } ) → ( 0 ( +g ‘ 𝑅 ) ( 𝑋 ‘ 𝑧 ) ) = ( 𝑋 ‘ 𝑧 ) ) |
187 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑦 ∈ { 𝑧 } ) → 𝑦 ∈ { 𝑧 } ) |
188 |
|
velsn |
⊢ ( 𝑦 ∈ { 𝑧 } ↔ 𝑦 = 𝑧 ) |
189 |
187 188
|
sylib |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑦 ∈ { 𝑧 } ) → 𝑦 = 𝑧 ) |
190 |
189
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑦 ∈ { 𝑧 } ) → ( 𝑋 ‘ 𝑦 ) = ( 𝑋 ‘ 𝑧 ) ) |
191 |
186 190
|
eqtr4d |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑦 ∈ { 𝑧 } ) → ( 0 ( +g ‘ 𝑅 ) ( 𝑋 ‘ 𝑧 ) ) = ( 𝑋 ‘ 𝑦 ) ) |
192 |
120
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑦 ∈ { 𝑧 } ) → ¬ 𝑧 ∈ 𝑥 ) |
193 |
189 192
|
eqneltrd |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑦 ∈ { 𝑧 } ) → ¬ 𝑦 ∈ 𝑥 ) |
194 |
193
|
iffalsed |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑦 ∈ { 𝑧 } ) → if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) = 0 ) |
195 |
189
|
iftrued |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑦 ∈ { 𝑧 } ) → if ( 𝑦 = 𝑧 , 1 , 0 ) = 1 ) |
196 |
195
|
oveq2d |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑦 ∈ { 𝑧 } ) → ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) if ( 𝑦 = 𝑧 , 1 , 0 ) ) = ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) 1 ) ) |
197 |
10 170 4
|
ringridm |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ‘ 𝑧 ) ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) 1 ) = ( 𝑋 ‘ 𝑧 ) ) |
198 |
132 127 197
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) 1 ) = ( 𝑋 ‘ 𝑧 ) ) |
199 |
198
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑦 ∈ { 𝑧 } ) → ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) 1 ) = ( 𝑋 ‘ 𝑧 ) ) |
200 |
196 199
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑦 ∈ { 𝑧 } ) → ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) if ( 𝑦 = 𝑧 , 1 , 0 ) ) = ( 𝑋 ‘ 𝑧 ) ) |
201 |
194 200
|
oveq12d |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑦 ∈ { 𝑧 } ) → ( if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ( +g ‘ 𝑅 ) ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) if ( 𝑦 = 𝑧 , 1 , 0 ) ) ) = ( 0 ( +g ‘ 𝑅 ) ( 𝑋 ‘ 𝑧 ) ) ) |
202 |
|
elun2 |
⊢ ( 𝑦 ∈ { 𝑧 } → 𝑦 ∈ ( 𝑥 ∪ { 𝑧 } ) ) |
203 |
202
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑦 ∈ { 𝑧 } ) → 𝑦 ∈ ( 𝑥 ∪ { 𝑧 } ) ) |
204 |
203
|
iftrued |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑦 ∈ { 𝑧 } ) → if ( 𝑦 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑋 ‘ 𝑦 ) , 0 ) = ( 𝑋 ‘ 𝑦 ) ) |
205 |
191 201 204
|
3eqtr4d |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑦 ∈ { 𝑧 } ) → ( if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ( +g ‘ 𝑅 ) ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) if ( 𝑦 = 𝑧 , 1 , 0 ) ) ) = if ( 𝑦 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑋 ‘ 𝑦 ) , 0 ) ) |
206 |
83
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) → 𝑅 ∈ Grp ) |
207 |
10 142 3
|
grprid |
⊢ ( ( 𝑅 ∈ Grp ∧ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ∈ ( Base ‘ 𝑅 ) ) → ( if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ( +g ‘ 𝑅 ) 0 ) = if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) |
208 |
206 147 207
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) → ( if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ( +g ‘ 𝑅 ) 0 ) = if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) |
209 |
208
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) ∧ ¬ 𝑦 ∈ { 𝑧 } ) → ( if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ( +g ‘ 𝑅 ) 0 ) = if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) |
210 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) ∧ ¬ 𝑦 ∈ { 𝑧 } ) → ¬ 𝑦 ∈ { 𝑧 } ) |
211 |
210 188
|
sylnib |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) ∧ ¬ 𝑦 ∈ { 𝑧 } ) → ¬ 𝑦 = 𝑧 ) |
212 |
211
|
iffalsed |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) ∧ ¬ 𝑦 ∈ { 𝑧 } ) → if ( 𝑦 = 𝑧 , 1 , 0 ) = 0 ) |
213 |
212
|
oveq2d |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) ∧ ¬ 𝑦 ∈ { 𝑧 } ) → ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) if ( 𝑦 = 𝑧 , 1 , 0 ) ) = ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) 0 ) ) |
214 |
10 170 3
|
ringrz |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ‘ 𝑧 ) ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) 0 ) = 0 ) |
215 |
132 127 214
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) 0 ) = 0 ) |
216 |
215
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) ∧ ¬ 𝑦 ∈ { 𝑧 } ) → ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) 0 ) = 0 ) |
217 |
213 216
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) ∧ ¬ 𝑦 ∈ { 𝑧 } ) → ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) if ( 𝑦 = 𝑧 , 1 , 0 ) ) = 0 ) |
218 |
217
|
oveq2d |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) ∧ ¬ 𝑦 ∈ { 𝑧 } ) → ( if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ( +g ‘ 𝑅 ) ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) if ( 𝑦 = 𝑧 , 1 , 0 ) ) ) = ( if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ( +g ‘ 𝑅 ) 0 ) ) |
219 |
|
elun |
⊢ ( 𝑦 ∈ ( 𝑥 ∪ { 𝑧 } ) ↔ ( 𝑦 ∈ 𝑥 ∨ 𝑦 ∈ { 𝑧 } ) ) |
220 |
|
orcom |
⊢ ( ( 𝑦 ∈ 𝑥 ∨ 𝑦 ∈ { 𝑧 } ) ↔ ( 𝑦 ∈ { 𝑧 } ∨ 𝑦 ∈ 𝑥 ) ) |
221 |
219 220
|
bitri |
⊢ ( 𝑦 ∈ ( 𝑥 ∪ { 𝑧 } ) ↔ ( 𝑦 ∈ { 𝑧 } ∨ 𝑦 ∈ 𝑥 ) ) |
222 |
|
biorf |
⊢ ( ¬ 𝑦 ∈ { 𝑧 } → ( 𝑦 ∈ 𝑥 ↔ ( 𝑦 ∈ { 𝑧 } ∨ 𝑦 ∈ 𝑥 ) ) ) |
223 |
221 222
|
bitr4id |
⊢ ( ¬ 𝑦 ∈ { 𝑧 } → ( 𝑦 ∈ ( 𝑥 ∪ { 𝑧 } ) ↔ 𝑦 ∈ 𝑥 ) ) |
224 |
223
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) ∧ ¬ 𝑦 ∈ { 𝑧 } ) → ( 𝑦 ∈ ( 𝑥 ∪ { 𝑧 } ) ↔ 𝑦 ∈ 𝑥 ) ) |
225 |
224
|
ifbid |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) ∧ ¬ 𝑦 ∈ { 𝑧 } ) → if ( 𝑦 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑋 ‘ 𝑦 ) , 0 ) = if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) |
226 |
209 218 225
|
3eqtr4d |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) ∧ ¬ 𝑦 ∈ { 𝑧 } ) → ( if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ( +g ‘ 𝑅 ) ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) if ( 𝑦 = 𝑧 , 1 , 0 ) ) ) = if ( 𝑦 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑋 ‘ 𝑦 ) , 0 ) ) |
227 |
205 226
|
pm2.61dan |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) → ( if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ( +g ‘ 𝑅 ) ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) if ( 𝑦 = 𝑧 , 1 , 0 ) ) ) = if ( 𝑦 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑋 ‘ 𝑦 ) , 0 ) ) |
228 |
227
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → ( 𝑦 ∈ 𝐷 ↦ ( if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ( +g ‘ 𝑅 ) ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) if ( 𝑦 = 𝑧 , 1 , 0 ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) |
229 |
167 182 228
|
3eqtrrd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑋 ‘ 𝑦 ) , 0 ) ) = ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ( +g ‘ 𝑃 ) ( ( 𝑋 ‘ 𝑧 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑧 , 1 , 0 ) ) ) ) ) |
230 |
141 229
|
eqeq12d |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → ( ( 𝑃 Σg ( 𝑘 ∈ ( 𝑥 ∪ { 𝑧 } ) ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ↔ ( ( 𝑃 Σg ( 𝑘 ∈ 𝑥 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) ( +g ‘ 𝑃 ) ( ( 𝑋 ‘ 𝑧 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑧 , 1 , 0 ) ) ) ) = ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ( +g ‘ 𝑃 ) ( ( 𝑋 ‘ 𝑧 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑧 , 1 , 0 ) ) ) ) ) ) |
231 |
92 230
|
imbitrrid |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → ( ( 𝑃 Σg ( 𝑘 ∈ 𝑥 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) → ( 𝑃 Σg ( 𝑘 ∈ ( 𝑥 ∪ { 𝑧 } ) ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) ) |
232 |
231
|
expr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ) → ( ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 → ( ( 𝑃 Σg ( 𝑘 ∈ 𝑥 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) → ( 𝑃 Σg ( 𝑘 ∈ ( 𝑥 ∪ { 𝑧 } ) ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) ) ) |
233 |
232
|
a2d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ) → ( ( ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 → ( 𝑃 Σg ( 𝑘 ∈ 𝑥 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) → ( ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 → ( 𝑃 Σg ( 𝑘 ∈ ( 𝑥 ∪ { 𝑧 } ) ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) ) ) |
234 |
91 233
|
syl5 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ) → ( ( 𝑥 ⊆ 𝐷 → ( 𝑃 Σg ( 𝑘 ∈ 𝑥 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) → ( ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 → ( 𝑃 Σg ( 𝑘 ∈ ( 𝑥 ∪ { 𝑧 } ) ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) ) ) |
235 |
234
|
expcom |
⊢ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) → ( 𝜑 → ( ( 𝑥 ⊆ 𝐷 → ( 𝑃 Σg ( 𝑘 ∈ 𝑥 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) → ( ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 → ( 𝑃 Σg ( 𝑘 ∈ ( 𝑥 ∪ { 𝑧 } ) ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) ) ) ) |
236 |
235
|
a2d |
⊢ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) → ( ( 𝜑 → ( 𝑥 ⊆ 𝐷 → ( 𝑃 Σg ( 𝑘 ∈ 𝑥 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) ) → ( 𝜑 → ( ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 → ( 𝑃 Σg ( 𝑘 ∈ ( 𝑥 ∪ { 𝑧 } ) ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) ) ) ) |
237 |
54 63 72 81 87 236
|
findcard2s |
⊢ ( ( 𝑋 supp 0 ) ∈ Fin → ( 𝜑 → ( ( 𝑋 supp 0 ) ⊆ 𝐷 → ( 𝑃 Σg ( 𝑘 ∈ ( 𝑋 supp 0 ) ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ ( 𝑋 supp 0 ) , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) ) ) |
238 |
38 237
|
mpcom |
⊢ ( 𝜑 → ( ( 𝑋 supp 0 ) ⊆ 𝐷 → ( 𝑃 Σg ( 𝑘 ∈ ( 𝑋 supp 0 ) ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ ( 𝑋 supp 0 ) , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) ) |
239 |
32 238
|
mpd |
⊢ ( 𝜑 → ( 𝑃 Σg ( 𝑘 ∈ ( 𝑋 supp 0 ) ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ ( 𝑋 supp 0 ) , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) |
240 |
30 239
|
eqtr4d |
⊢ ( 𝜑 → 𝑋 = ( 𝑃 Σg ( 𝑘 ∈ ( 𝑋 supp 0 ) ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) ) |
241 |
32
|
resmptd |
⊢ ( 𝜑 → ( ( 𝑘 ∈ 𝐷 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ↾ ( 𝑋 supp 0 ) ) = ( 𝑘 ∈ ( 𝑋 supp 0 ) ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) |
242 |
241
|
oveq2d |
⊢ ( 𝜑 → ( 𝑃 Σg ( ( 𝑘 ∈ 𝐷 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ↾ ( 𝑋 supp 0 ) ) ) = ( 𝑃 Σg ( 𝑘 ∈ ( 𝑋 supp 0 ) ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) ) |
243 |
115
|
fmpttd |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐷 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) : 𝐷 ⟶ 𝐵 ) |
244 |
11 16 19 21
|
suppssr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ ( 𝑋 supp 0 ) ) ) → ( 𝑋 ‘ 𝑘 ) = 0 ) |
245 |
244
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ ( 𝑋 supp 0 ) ) ) → ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) = ( 0 · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) |
246 |
|
eldifi |
⊢ ( 𝑘 ∈ ( 𝐷 ∖ ( 𝑋 supp 0 ) ) → 𝑘 ∈ 𝐷 ) |
247 |
107
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → ( 0g ‘ 𝑅 ) = ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ) |
248 |
3 247
|
eqtrid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → 0 = ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ) |
249 |
248
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → ( 0 · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) = ( ( 0g ‘ ( Scalar ‘ 𝑃 ) ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) |
250 |
|
eqid |
⊢ ( 0g ‘ ( Scalar ‘ 𝑃 ) ) = ( 0g ‘ ( Scalar ‘ 𝑃 ) ) |
251 |
6 112 7 250 44
|
lmod0vs |
⊢ ( ( 𝑃 ∈ LMod ∧ ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ∈ 𝐵 ) → ( ( 0g ‘ ( Scalar ‘ 𝑃 ) ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) = ( 0g ‘ 𝑃 ) ) |
252 |
104 111 251
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → ( ( 0g ‘ ( Scalar ‘ 𝑃 ) ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) = ( 0g ‘ 𝑃 ) ) |
253 |
249 252
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → ( 0 · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) = ( 0g ‘ 𝑃 ) ) |
254 |
246 253
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ ( 𝑋 supp 0 ) ) ) → ( 0 · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) = ( 0g ‘ 𝑃 ) ) |
255 |
245 254
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ ( 𝑋 supp 0 ) ) ) → ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) = ( 0g ‘ 𝑃 ) ) |
256 |
255 19
|
suppss2 |
⊢ ( 𝜑 → ( ( 𝑘 ∈ 𝐷 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) supp ( 0g ‘ 𝑃 ) ) ⊆ ( 𝑋 supp 0 ) ) |
257 |
18
|
mptex |
⊢ ( 𝑘 ∈ 𝐷 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ∈ V |
258 |
|
funmpt |
⊢ Fun ( 𝑘 ∈ 𝐷 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) |
259 |
|
fvex |
⊢ ( 0g ‘ 𝑃 ) ∈ V |
260 |
257 258 259
|
3pm3.2i |
⊢ ( ( 𝑘 ∈ 𝐷 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ∈ V ∧ Fun ( 𝑘 ∈ 𝐷 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ∧ ( 0g ‘ 𝑃 ) ∈ V ) |
261 |
260
|
a1i |
⊢ ( 𝜑 → ( ( 𝑘 ∈ 𝐷 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ∈ V ∧ Fun ( 𝑘 ∈ 𝐷 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ∧ ( 0g ‘ 𝑃 ) ∈ V ) ) |
262 |
|
suppssfifsupp |
⊢ ( ( ( ( 𝑘 ∈ 𝐷 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ∈ V ∧ Fun ( 𝑘 ∈ 𝐷 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ∧ ( 0g ‘ 𝑃 ) ∈ V ) ∧ ( ( 𝑋 supp 0 ) ∈ Fin ∧ ( ( 𝑘 ∈ 𝐷 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) supp ( 0g ‘ 𝑃 ) ) ⊆ ( 𝑋 supp 0 ) ) ) → ( 𝑘 ∈ 𝐷 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) finSupp ( 0g ‘ 𝑃 ) ) |
263 |
261 38 256 262
|
syl12anc |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐷 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) finSupp ( 0g ‘ 𝑃 ) ) |
264 |
6 44 96 19 243 256 263
|
gsumres |
⊢ ( 𝜑 → ( 𝑃 Σg ( ( 𝑘 ∈ 𝐷 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ↾ ( 𝑋 supp 0 ) ) ) = ( 𝑃 Σg ( 𝑘 ∈ 𝐷 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) ) |
265 |
242 264
|
eqtr3d |
⊢ ( 𝜑 → ( 𝑃 Σg ( 𝑘 ∈ ( 𝑋 supp 0 ) ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑃 Σg ( 𝑘 ∈ 𝐷 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) ) |
266 |
240 265
|
eqtrd |
⊢ ( 𝜑 → 𝑋 = ( 𝑃 Σg ( 𝑘 ∈ 𝐷 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) ) |