| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mplcoe1.p | ⊢ 𝑃  =  ( 𝐼  mPoly  𝑅 ) | 
						
							| 2 |  | mplcoe1.d | ⊢ 𝐷  =  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } | 
						
							| 3 |  | mplcoe1.z | ⊢  0   =  ( 0g ‘ 𝑅 ) | 
						
							| 4 |  | mplcoe1.o | ⊢  1   =  ( 1r ‘ 𝑅 ) | 
						
							| 5 |  | mplcoe1.i | ⊢ ( 𝜑  →  𝐼  ∈  𝑊 ) | 
						
							| 6 |  | mplcoe1.b | ⊢ 𝐵  =  ( Base ‘ 𝑃 ) | 
						
							| 7 |  | mplcoe1.n | ⊢  ·   =  (  ·𝑠  ‘ 𝑃 ) | 
						
							| 8 |  | mplcoe1.r | ⊢ ( 𝜑  →  𝑅  ∈  Ring ) | 
						
							| 9 |  | mplcoe1.x | ⊢ ( 𝜑  →  𝑋  ∈  𝐵 ) | 
						
							| 10 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 11 | 1 10 6 2 9 | mplelf | ⊢ ( 𝜑  →  𝑋 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 12 | 11 | feqmptd | ⊢ ( 𝜑  →  𝑋  =  ( 𝑦  ∈  𝐷  ↦  ( 𝑋 ‘ 𝑦 ) ) ) | 
						
							| 13 |  | iftrue | ⊢ ( 𝑦  ∈  ( 𝑋  supp   0  )  →  if ( 𝑦  ∈  ( 𝑋  supp   0  ) ,  ( 𝑋 ‘ 𝑦 ) ,   0  )  =  ( 𝑋 ‘ 𝑦 ) ) | 
						
							| 14 | 13 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝐷 )  ∧  𝑦  ∈  ( 𝑋  supp   0  ) )  →  if ( 𝑦  ∈  ( 𝑋  supp   0  ) ,  ( 𝑋 ‘ 𝑦 ) ,   0  )  =  ( 𝑋 ‘ 𝑦 ) ) | 
						
							| 15 |  | eldif | ⊢ ( 𝑦  ∈  ( 𝐷  ∖  ( 𝑋  supp   0  ) )  ↔  ( 𝑦  ∈  𝐷  ∧  ¬  𝑦  ∈  ( 𝑋  supp   0  ) ) ) | 
						
							| 16 |  | ssidd | ⊢ ( 𝜑  →  ( 𝑋  supp   0  )  ⊆  ( 𝑋  supp   0  ) ) | 
						
							| 17 |  | ovex | ⊢ ( ℕ0  ↑m  𝐼 )  ∈  V | 
						
							| 18 | 2 17 | rabex2 | ⊢ 𝐷  ∈  V | 
						
							| 19 | 18 | a1i | ⊢ ( 𝜑  →  𝐷  ∈  V ) | 
						
							| 20 | 3 | fvexi | ⊢  0   ∈  V | 
						
							| 21 | 20 | a1i | ⊢ ( 𝜑  →   0   ∈  V ) | 
						
							| 22 | 11 16 19 21 | suppssr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( 𝐷  ∖  ( 𝑋  supp   0  ) ) )  →  ( 𝑋 ‘ 𝑦 )  =   0  ) | 
						
							| 23 | 22 | ifeq2d | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( 𝐷  ∖  ( 𝑋  supp   0  ) ) )  →  if ( 𝑦  ∈  ( 𝑋  supp   0  ) ,  ( 𝑋 ‘ 𝑦 ) ,  ( 𝑋 ‘ 𝑦 ) )  =  if ( 𝑦  ∈  ( 𝑋  supp   0  ) ,  ( 𝑋 ‘ 𝑦 ) ,   0  ) ) | 
						
							| 24 |  | ifid | ⊢ if ( 𝑦  ∈  ( 𝑋  supp   0  ) ,  ( 𝑋 ‘ 𝑦 ) ,  ( 𝑋 ‘ 𝑦 ) )  =  ( 𝑋 ‘ 𝑦 ) | 
						
							| 25 | 23 24 | eqtr3di | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( 𝐷  ∖  ( 𝑋  supp   0  ) ) )  →  if ( 𝑦  ∈  ( 𝑋  supp   0  ) ,  ( 𝑋 ‘ 𝑦 ) ,   0  )  =  ( 𝑋 ‘ 𝑦 ) ) | 
						
							| 26 | 15 25 | sylan2br | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝐷  ∧  ¬  𝑦  ∈  ( 𝑋  supp   0  ) ) )  →  if ( 𝑦  ∈  ( 𝑋  supp   0  ) ,  ( 𝑋 ‘ 𝑦 ) ,   0  )  =  ( 𝑋 ‘ 𝑦 ) ) | 
						
							| 27 | 26 | anassrs | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝐷 )  ∧  ¬  𝑦  ∈  ( 𝑋  supp   0  ) )  →  if ( 𝑦  ∈  ( 𝑋  supp   0  ) ,  ( 𝑋 ‘ 𝑦 ) ,   0  )  =  ( 𝑋 ‘ 𝑦 ) ) | 
						
							| 28 | 14 27 | pm2.61dan | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐷 )  →  if ( 𝑦  ∈  ( 𝑋  supp   0  ) ,  ( 𝑋 ‘ 𝑦 ) ,   0  )  =  ( 𝑋 ‘ 𝑦 ) ) | 
						
							| 29 | 28 | mpteq2dva | ⊢ ( 𝜑  →  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  ∈  ( 𝑋  supp   0  ) ,  ( 𝑋 ‘ 𝑦 ) ,   0  ) )  =  ( 𝑦  ∈  𝐷  ↦  ( 𝑋 ‘ 𝑦 ) ) ) | 
						
							| 30 | 12 29 | eqtr4d | ⊢ ( 𝜑  →  𝑋  =  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  ∈  ( 𝑋  supp   0  ) ,  ( 𝑋 ‘ 𝑦 ) ,   0  ) ) ) | 
						
							| 31 |  | suppssdm | ⊢ ( 𝑋  supp   0  )  ⊆  dom  𝑋 | 
						
							| 32 | 31 11 | fssdm | ⊢ ( 𝜑  →  ( 𝑋  supp   0  )  ⊆  𝐷 ) | 
						
							| 33 |  | eqid | ⊢ ( 𝐼  mPwSer  𝑅 )  =  ( 𝐼  mPwSer  𝑅 ) | 
						
							| 34 |  | eqid | ⊢ ( Base ‘ ( 𝐼  mPwSer  𝑅 ) )  =  ( Base ‘ ( 𝐼  mPwSer  𝑅 ) ) | 
						
							| 35 | 1 33 34 3 6 | mplelbas | ⊢ ( 𝑋  ∈  𝐵  ↔  ( 𝑋  ∈  ( Base ‘ ( 𝐼  mPwSer  𝑅 ) )  ∧  𝑋  finSupp   0  ) ) | 
						
							| 36 | 35 | simprbi | ⊢ ( 𝑋  ∈  𝐵  →  𝑋  finSupp   0  ) | 
						
							| 37 | 9 36 | syl | ⊢ ( 𝜑  →  𝑋  finSupp   0  ) | 
						
							| 38 | 37 | fsuppimpd | ⊢ ( 𝜑  →  ( 𝑋  supp   0  )  ∈  Fin ) | 
						
							| 39 |  | sseq1 | ⊢ ( 𝑤  =  ∅  →  ( 𝑤  ⊆  𝐷  ↔  ∅  ⊆  𝐷 ) ) | 
						
							| 40 |  | mpteq1 | ⊢ ( 𝑤  =  ∅  →  ( 𝑘  ∈  𝑤  ↦  ( ( 𝑋 ‘ 𝑘 )  ·  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑘 ,   1  ,   0  ) ) ) )  =  ( 𝑘  ∈  ∅  ↦  ( ( 𝑋 ‘ 𝑘 )  ·  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑘 ,   1  ,   0  ) ) ) ) ) | 
						
							| 41 |  | mpt0 | ⊢ ( 𝑘  ∈  ∅  ↦  ( ( 𝑋 ‘ 𝑘 )  ·  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑘 ,   1  ,   0  ) ) ) )  =  ∅ | 
						
							| 42 | 40 41 | eqtrdi | ⊢ ( 𝑤  =  ∅  →  ( 𝑘  ∈  𝑤  ↦  ( ( 𝑋 ‘ 𝑘 )  ·  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑘 ,   1  ,   0  ) ) ) )  =  ∅ ) | 
						
							| 43 | 42 | oveq2d | ⊢ ( 𝑤  =  ∅  →  ( 𝑃  Σg  ( 𝑘  ∈  𝑤  ↦  ( ( 𝑋 ‘ 𝑘 )  ·  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑘 ,   1  ,   0  ) ) ) ) )  =  ( 𝑃  Σg  ∅ ) ) | 
						
							| 44 |  | eqid | ⊢ ( 0g ‘ 𝑃 )  =  ( 0g ‘ 𝑃 ) | 
						
							| 45 | 44 | gsum0 | ⊢ ( 𝑃  Σg  ∅ )  =  ( 0g ‘ 𝑃 ) | 
						
							| 46 | 43 45 | eqtrdi | ⊢ ( 𝑤  =  ∅  →  ( 𝑃  Σg  ( 𝑘  ∈  𝑤  ↦  ( ( 𝑋 ‘ 𝑘 )  ·  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑘 ,   1  ,   0  ) ) ) ) )  =  ( 0g ‘ 𝑃 ) ) | 
						
							| 47 |  | noel | ⊢ ¬  𝑦  ∈  ∅ | 
						
							| 48 |  | eleq2 | ⊢ ( 𝑤  =  ∅  →  ( 𝑦  ∈  𝑤  ↔  𝑦  ∈  ∅ ) ) | 
						
							| 49 | 47 48 | mtbiri | ⊢ ( 𝑤  =  ∅  →  ¬  𝑦  ∈  𝑤 ) | 
						
							| 50 | 49 | iffalsed | ⊢ ( 𝑤  =  ∅  →  if ( 𝑦  ∈  𝑤 ,  ( 𝑋 ‘ 𝑦 ) ,   0  )  =   0  ) | 
						
							| 51 | 50 | mpteq2dv | ⊢ ( 𝑤  =  ∅  →  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  ∈  𝑤 ,  ( 𝑋 ‘ 𝑦 ) ,   0  ) )  =  ( 𝑦  ∈  𝐷  ↦   0  ) ) | 
						
							| 52 | 46 51 | eqeq12d | ⊢ ( 𝑤  =  ∅  →  ( ( 𝑃  Σg  ( 𝑘  ∈  𝑤  ↦  ( ( 𝑋 ‘ 𝑘 )  ·  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑘 ,   1  ,   0  ) ) ) ) )  =  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  ∈  𝑤 ,  ( 𝑋 ‘ 𝑦 ) ,   0  ) )  ↔  ( 0g ‘ 𝑃 )  =  ( 𝑦  ∈  𝐷  ↦   0  ) ) ) | 
						
							| 53 | 39 52 | imbi12d | ⊢ ( 𝑤  =  ∅  →  ( ( 𝑤  ⊆  𝐷  →  ( 𝑃  Σg  ( 𝑘  ∈  𝑤  ↦  ( ( 𝑋 ‘ 𝑘 )  ·  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑘 ,   1  ,   0  ) ) ) ) )  =  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  ∈  𝑤 ,  ( 𝑋 ‘ 𝑦 ) ,   0  ) ) )  ↔  ( ∅  ⊆  𝐷  →  ( 0g ‘ 𝑃 )  =  ( 𝑦  ∈  𝐷  ↦   0  ) ) ) ) | 
						
							| 54 | 53 | imbi2d | ⊢ ( 𝑤  =  ∅  →  ( ( 𝜑  →  ( 𝑤  ⊆  𝐷  →  ( 𝑃  Σg  ( 𝑘  ∈  𝑤  ↦  ( ( 𝑋 ‘ 𝑘 )  ·  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑘 ,   1  ,   0  ) ) ) ) )  =  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  ∈  𝑤 ,  ( 𝑋 ‘ 𝑦 ) ,   0  ) ) ) )  ↔  ( 𝜑  →  ( ∅  ⊆  𝐷  →  ( 0g ‘ 𝑃 )  =  ( 𝑦  ∈  𝐷  ↦   0  ) ) ) ) ) | 
						
							| 55 |  | sseq1 | ⊢ ( 𝑤  =  𝑥  →  ( 𝑤  ⊆  𝐷  ↔  𝑥  ⊆  𝐷 ) ) | 
						
							| 56 |  | mpteq1 | ⊢ ( 𝑤  =  𝑥  →  ( 𝑘  ∈  𝑤  ↦  ( ( 𝑋 ‘ 𝑘 )  ·  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑘 ,   1  ,   0  ) ) ) )  =  ( 𝑘  ∈  𝑥  ↦  ( ( 𝑋 ‘ 𝑘 )  ·  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑘 ,   1  ,   0  ) ) ) ) ) | 
						
							| 57 | 56 | oveq2d | ⊢ ( 𝑤  =  𝑥  →  ( 𝑃  Σg  ( 𝑘  ∈  𝑤  ↦  ( ( 𝑋 ‘ 𝑘 )  ·  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑘 ,   1  ,   0  ) ) ) ) )  =  ( 𝑃  Σg  ( 𝑘  ∈  𝑥  ↦  ( ( 𝑋 ‘ 𝑘 )  ·  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑘 ,   1  ,   0  ) ) ) ) ) ) | 
						
							| 58 |  | eleq2 | ⊢ ( 𝑤  =  𝑥  →  ( 𝑦  ∈  𝑤  ↔  𝑦  ∈  𝑥 ) ) | 
						
							| 59 | 58 | ifbid | ⊢ ( 𝑤  =  𝑥  →  if ( 𝑦  ∈  𝑤 ,  ( 𝑋 ‘ 𝑦 ) ,   0  )  =  if ( 𝑦  ∈  𝑥 ,  ( 𝑋 ‘ 𝑦 ) ,   0  ) ) | 
						
							| 60 | 59 | mpteq2dv | ⊢ ( 𝑤  =  𝑥  →  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  ∈  𝑤 ,  ( 𝑋 ‘ 𝑦 ) ,   0  ) )  =  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  ∈  𝑥 ,  ( 𝑋 ‘ 𝑦 ) ,   0  ) ) ) | 
						
							| 61 | 57 60 | eqeq12d | ⊢ ( 𝑤  =  𝑥  →  ( ( 𝑃  Σg  ( 𝑘  ∈  𝑤  ↦  ( ( 𝑋 ‘ 𝑘 )  ·  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑘 ,   1  ,   0  ) ) ) ) )  =  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  ∈  𝑤 ,  ( 𝑋 ‘ 𝑦 ) ,   0  ) )  ↔  ( 𝑃  Σg  ( 𝑘  ∈  𝑥  ↦  ( ( 𝑋 ‘ 𝑘 )  ·  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑘 ,   1  ,   0  ) ) ) ) )  =  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  ∈  𝑥 ,  ( 𝑋 ‘ 𝑦 ) ,   0  ) ) ) ) | 
						
							| 62 | 55 61 | imbi12d | ⊢ ( 𝑤  =  𝑥  →  ( ( 𝑤  ⊆  𝐷  →  ( 𝑃  Σg  ( 𝑘  ∈  𝑤  ↦  ( ( 𝑋 ‘ 𝑘 )  ·  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑘 ,   1  ,   0  ) ) ) ) )  =  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  ∈  𝑤 ,  ( 𝑋 ‘ 𝑦 ) ,   0  ) ) )  ↔  ( 𝑥  ⊆  𝐷  →  ( 𝑃  Σg  ( 𝑘  ∈  𝑥  ↦  ( ( 𝑋 ‘ 𝑘 )  ·  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑘 ,   1  ,   0  ) ) ) ) )  =  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  ∈  𝑥 ,  ( 𝑋 ‘ 𝑦 ) ,   0  ) ) ) ) ) | 
						
							| 63 | 62 | imbi2d | ⊢ ( 𝑤  =  𝑥  →  ( ( 𝜑  →  ( 𝑤  ⊆  𝐷  →  ( 𝑃  Σg  ( 𝑘  ∈  𝑤  ↦  ( ( 𝑋 ‘ 𝑘 )  ·  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑘 ,   1  ,   0  ) ) ) ) )  =  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  ∈  𝑤 ,  ( 𝑋 ‘ 𝑦 ) ,   0  ) ) ) )  ↔  ( 𝜑  →  ( 𝑥  ⊆  𝐷  →  ( 𝑃  Σg  ( 𝑘  ∈  𝑥  ↦  ( ( 𝑋 ‘ 𝑘 )  ·  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑘 ,   1  ,   0  ) ) ) ) )  =  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  ∈  𝑥 ,  ( 𝑋 ‘ 𝑦 ) ,   0  ) ) ) ) ) ) | 
						
							| 64 |  | sseq1 | ⊢ ( 𝑤  =  ( 𝑥  ∪  { 𝑧 } )  →  ( 𝑤  ⊆  𝐷  ↔  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐷 ) ) | 
						
							| 65 |  | mpteq1 | ⊢ ( 𝑤  =  ( 𝑥  ∪  { 𝑧 } )  →  ( 𝑘  ∈  𝑤  ↦  ( ( 𝑋 ‘ 𝑘 )  ·  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑘 ,   1  ,   0  ) ) ) )  =  ( 𝑘  ∈  ( 𝑥  ∪  { 𝑧 } )  ↦  ( ( 𝑋 ‘ 𝑘 )  ·  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑘 ,   1  ,   0  ) ) ) ) ) | 
						
							| 66 | 65 | oveq2d | ⊢ ( 𝑤  =  ( 𝑥  ∪  { 𝑧 } )  →  ( 𝑃  Σg  ( 𝑘  ∈  𝑤  ↦  ( ( 𝑋 ‘ 𝑘 )  ·  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑘 ,   1  ,   0  ) ) ) ) )  =  ( 𝑃  Σg  ( 𝑘  ∈  ( 𝑥  ∪  { 𝑧 } )  ↦  ( ( 𝑋 ‘ 𝑘 )  ·  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑘 ,   1  ,   0  ) ) ) ) ) ) | 
						
							| 67 |  | eleq2 | ⊢ ( 𝑤  =  ( 𝑥  ∪  { 𝑧 } )  →  ( 𝑦  ∈  𝑤  ↔  𝑦  ∈  ( 𝑥  ∪  { 𝑧 } ) ) ) | 
						
							| 68 | 67 | ifbid | ⊢ ( 𝑤  =  ( 𝑥  ∪  { 𝑧 } )  →  if ( 𝑦  ∈  𝑤 ,  ( 𝑋 ‘ 𝑦 ) ,   0  )  =  if ( 𝑦  ∈  ( 𝑥  ∪  { 𝑧 } ) ,  ( 𝑋 ‘ 𝑦 ) ,   0  ) ) | 
						
							| 69 | 68 | mpteq2dv | ⊢ ( 𝑤  =  ( 𝑥  ∪  { 𝑧 } )  →  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  ∈  𝑤 ,  ( 𝑋 ‘ 𝑦 ) ,   0  ) )  =  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  ∈  ( 𝑥  ∪  { 𝑧 } ) ,  ( 𝑋 ‘ 𝑦 ) ,   0  ) ) ) | 
						
							| 70 | 66 69 | eqeq12d | ⊢ ( 𝑤  =  ( 𝑥  ∪  { 𝑧 } )  →  ( ( 𝑃  Σg  ( 𝑘  ∈  𝑤  ↦  ( ( 𝑋 ‘ 𝑘 )  ·  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑘 ,   1  ,   0  ) ) ) ) )  =  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  ∈  𝑤 ,  ( 𝑋 ‘ 𝑦 ) ,   0  ) )  ↔  ( 𝑃  Σg  ( 𝑘  ∈  ( 𝑥  ∪  { 𝑧 } )  ↦  ( ( 𝑋 ‘ 𝑘 )  ·  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑘 ,   1  ,   0  ) ) ) ) )  =  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  ∈  ( 𝑥  ∪  { 𝑧 } ) ,  ( 𝑋 ‘ 𝑦 ) ,   0  ) ) ) ) | 
						
							| 71 | 64 70 | imbi12d | ⊢ ( 𝑤  =  ( 𝑥  ∪  { 𝑧 } )  →  ( ( 𝑤  ⊆  𝐷  →  ( 𝑃  Σg  ( 𝑘  ∈  𝑤  ↦  ( ( 𝑋 ‘ 𝑘 )  ·  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑘 ,   1  ,   0  ) ) ) ) )  =  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  ∈  𝑤 ,  ( 𝑋 ‘ 𝑦 ) ,   0  ) ) )  ↔  ( ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐷  →  ( 𝑃  Σg  ( 𝑘  ∈  ( 𝑥  ∪  { 𝑧 } )  ↦  ( ( 𝑋 ‘ 𝑘 )  ·  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑘 ,   1  ,   0  ) ) ) ) )  =  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  ∈  ( 𝑥  ∪  { 𝑧 } ) ,  ( 𝑋 ‘ 𝑦 ) ,   0  ) ) ) ) ) | 
						
							| 72 | 71 | imbi2d | ⊢ ( 𝑤  =  ( 𝑥  ∪  { 𝑧 } )  →  ( ( 𝜑  →  ( 𝑤  ⊆  𝐷  →  ( 𝑃  Σg  ( 𝑘  ∈  𝑤  ↦  ( ( 𝑋 ‘ 𝑘 )  ·  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑘 ,   1  ,   0  ) ) ) ) )  =  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  ∈  𝑤 ,  ( 𝑋 ‘ 𝑦 ) ,   0  ) ) ) )  ↔  ( 𝜑  →  ( ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐷  →  ( 𝑃  Σg  ( 𝑘  ∈  ( 𝑥  ∪  { 𝑧 } )  ↦  ( ( 𝑋 ‘ 𝑘 )  ·  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑘 ,   1  ,   0  ) ) ) ) )  =  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  ∈  ( 𝑥  ∪  { 𝑧 } ) ,  ( 𝑋 ‘ 𝑦 ) ,   0  ) ) ) ) ) ) | 
						
							| 73 |  | sseq1 | ⊢ ( 𝑤  =  ( 𝑋  supp   0  )  →  ( 𝑤  ⊆  𝐷  ↔  ( 𝑋  supp   0  )  ⊆  𝐷 ) ) | 
						
							| 74 |  | mpteq1 | ⊢ ( 𝑤  =  ( 𝑋  supp   0  )  →  ( 𝑘  ∈  𝑤  ↦  ( ( 𝑋 ‘ 𝑘 )  ·  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑘 ,   1  ,   0  ) ) ) )  =  ( 𝑘  ∈  ( 𝑋  supp   0  )  ↦  ( ( 𝑋 ‘ 𝑘 )  ·  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑘 ,   1  ,   0  ) ) ) ) ) | 
						
							| 75 | 74 | oveq2d | ⊢ ( 𝑤  =  ( 𝑋  supp   0  )  →  ( 𝑃  Σg  ( 𝑘  ∈  𝑤  ↦  ( ( 𝑋 ‘ 𝑘 )  ·  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑘 ,   1  ,   0  ) ) ) ) )  =  ( 𝑃  Σg  ( 𝑘  ∈  ( 𝑋  supp   0  )  ↦  ( ( 𝑋 ‘ 𝑘 )  ·  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑘 ,   1  ,   0  ) ) ) ) ) ) | 
						
							| 76 |  | eleq2 | ⊢ ( 𝑤  =  ( 𝑋  supp   0  )  →  ( 𝑦  ∈  𝑤  ↔  𝑦  ∈  ( 𝑋  supp   0  ) ) ) | 
						
							| 77 | 76 | ifbid | ⊢ ( 𝑤  =  ( 𝑋  supp   0  )  →  if ( 𝑦  ∈  𝑤 ,  ( 𝑋 ‘ 𝑦 ) ,   0  )  =  if ( 𝑦  ∈  ( 𝑋  supp   0  ) ,  ( 𝑋 ‘ 𝑦 ) ,   0  ) ) | 
						
							| 78 | 77 | mpteq2dv | ⊢ ( 𝑤  =  ( 𝑋  supp   0  )  →  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  ∈  𝑤 ,  ( 𝑋 ‘ 𝑦 ) ,   0  ) )  =  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  ∈  ( 𝑋  supp   0  ) ,  ( 𝑋 ‘ 𝑦 ) ,   0  ) ) ) | 
						
							| 79 | 75 78 | eqeq12d | ⊢ ( 𝑤  =  ( 𝑋  supp   0  )  →  ( ( 𝑃  Σg  ( 𝑘  ∈  𝑤  ↦  ( ( 𝑋 ‘ 𝑘 )  ·  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑘 ,   1  ,   0  ) ) ) ) )  =  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  ∈  𝑤 ,  ( 𝑋 ‘ 𝑦 ) ,   0  ) )  ↔  ( 𝑃  Σg  ( 𝑘  ∈  ( 𝑋  supp   0  )  ↦  ( ( 𝑋 ‘ 𝑘 )  ·  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑘 ,   1  ,   0  ) ) ) ) )  =  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  ∈  ( 𝑋  supp   0  ) ,  ( 𝑋 ‘ 𝑦 ) ,   0  ) ) ) ) | 
						
							| 80 | 73 79 | imbi12d | ⊢ ( 𝑤  =  ( 𝑋  supp   0  )  →  ( ( 𝑤  ⊆  𝐷  →  ( 𝑃  Σg  ( 𝑘  ∈  𝑤  ↦  ( ( 𝑋 ‘ 𝑘 )  ·  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑘 ,   1  ,   0  ) ) ) ) )  =  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  ∈  𝑤 ,  ( 𝑋 ‘ 𝑦 ) ,   0  ) ) )  ↔  ( ( 𝑋  supp   0  )  ⊆  𝐷  →  ( 𝑃  Σg  ( 𝑘  ∈  ( 𝑋  supp   0  )  ↦  ( ( 𝑋 ‘ 𝑘 )  ·  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑘 ,   1  ,   0  ) ) ) ) )  =  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  ∈  ( 𝑋  supp   0  ) ,  ( 𝑋 ‘ 𝑦 ) ,   0  ) ) ) ) ) | 
						
							| 81 | 80 | imbi2d | ⊢ ( 𝑤  =  ( 𝑋  supp   0  )  →  ( ( 𝜑  →  ( 𝑤  ⊆  𝐷  →  ( 𝑃  Σg  ( 𝑘  ∈  𝑤  ↦  ( ( 𝑋 ‘ 𝑘 )  ·  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑘 ,   1  ,   0  ) ) ) ) )  =  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  ∈  𝑤 ,  ( 𝑋 ‘ 𝑦 ) ,   0  ) ) ) )  ↔  ( 𝜑  →  ( ( 𝑋  supp   0  )  ⊆  𝐷  →  ( 𝑃  Σg  ( 𝑘  ∈  ( 𝑋  supp   0  )  ↦  ( ( 𝑋 ‘ 𝑘 )  ·  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑘 ,   1  ,   0  ) ) ) ) )  =  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  ∈  ( 𝑋  supp   0  ) ,  ( 𝑋 ‘ 𝑦 ) ,   0  ) ) ) ) ) ) | 
						
							| 82 |  | ringgrp | ⊢ ( 𝑅  ∈  Ring  →  𝑅  ∈  Grp ) | 
						
							| 83 | 8 82 | syl | ⊢ ( 𝜑  →  𝑅  ∈  Grp ) | 
						
							| 84 | 1 2 3 44 5 83 | mpl0 | ⊢ ( 𝜑  →  ( 0g ‘ 𝑃 )  =  ( 𝐷  ×  {  0  } ) ) | 
						
							| 85 |  | fconstmpt | ⊢ ( 𝐷  ×  {  0  } )  =  ( 𝑦  ∈  𝐷  ↦   0  ) | 
						
							| 86 | 84 85 | eqtrdi | ⊢ ( 𝜑  →  ( 0g ‘ 𝑃 )  =  ( 𝑦  ∈  𝐷  ↦   0  ) ) | 
						
							| 87 | 86 | a1d | ⊢ ( 𝜑  →  ( ∅  ⊆  𝐷  →  ( 0g ‘ 𝑃 )  =  ( 𝑦  ∈  𝐷  ↦   0  ) ) ) | 
						
							| 88 |  | ssun1 | ⊢ 𝑥  ⊆  ( 𝑥  ∪  { 𝑧 } ) | 
						
							| 89 |  | sstr2 | ⊢ ( 𝑥  ⊆  ( 𝑥  ∪  { 𝑧 } )  →  ( ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐷  →  𝑥  ⊆  𝐷 ) ) | 
						
							| 90 | 88 89 | ax-mp | ⊢ ( ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐷  →  𝑥  ⊆  𝐷 ) | 
						
							| 91 | 90 | imim1i | ⊢ ( ( 𝑥  ⊆  𝐷  →  ( 𝑃  Σg  ( 𝑘  ∈  𝑥  ↦  ( ( 𝑋 ‘ 𝑘 )  ·  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑘 ,   1  ,   0  ) ) ) ) )  =  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  ∈  𝑥 ,  ( 𝑋 ‘ 𝑦 ) ,   0  ) ) )  →  ( ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐷  →  ( 𝑃  Σg  ( 𝑘  ∈  𝑥  ↦  ( ( 𝑋 ‘ 𝑘 )  ·  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑘 ,   1  ,   0  ) ) ) ) )  =  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  ∈  𝑥 ,  ( 𝑋 ‘ 𝑦 ) ,   0  ) ) ) ) | 
						
							| 92 |  | oveq1 | ⊢ ( ( 𝑃  Σg  ( 𝑘  ∈  𝑥  ↦  ( ( 𝑋 ‘ 𝑘 )  ·  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑘 ,   1  ,   0  ) ) ) ) )  =  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  ∈  𝑥 ,  ( 𝑋 ‘ 𝑦 ) ,   0  ) )  →  ( ( 𝑃  Σg  ( 𝑘  ∈  𝑥  ↦  ( ( 𝑋 ‘ 𝑘 )  ·  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑘 ,   1  ,   0  ) ) ) ) ) ( +g ‘ 𝑃 ) ( ( 𝑋 ‘ 𝑧 )  ·  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑧 ,   1  ,   0  ) ) ) )  =  ( ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  ∈  𝑥 ,  ( 𝑋 ‘ 𝑦 ) ,   0  ) ) ( +g ‘ 𝑃 ) ( ( 𝑋 ‘ 𝑧 )  ·  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑧 ,   1  ,   0  ) ) ) ) ) | 
						
							| 93 |  | eqid | ⊢ ( +g ‘ 𝑃 )  =  ( +g ‘ 𝑃 ) | 
						
							| 94 | 1 5 8 | mplringd | ⊢ ( 𝜑  →  𝑃  ∈  Ring ) | 
						
							| 95 |  | ringcmn | ⊢ ( 𝑃  ∈  Ring  →  𝑃  ∈  CMnd ) | 
						
							| 96 | 94 95 | syl | ⊢ ( 𝜑  →  𝑃  ∈  CMnd ) | 
						
							| 97 | 96 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐷 ) )  →  𝑃  ∈  CMnd ) | 
						
							| 98 |  | simprll | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐷 ) )  →  𝑥  ∈  Fin ) | 
						
							| 99 |  | simprr | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐷 ) )  →  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐷 ) | 
						
							| 100 | 99 | unssad | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐷 ) )  →  𝑥  ⊆  𝐷 ) | 
						
							| 101 | 100 | sselda | ⊢ ( ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐷 ) )  ∧  𝑘  ∈  𝑥 )  →  𝑘  ∈  𝐷 ) | 
						
							| 102 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐷 )  →  𝐼  ∈  𝑊 ) | 
						
							| 103 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐷 )  →  𝑅  ∈  Ring ) | 
						
							| 104 | 1 102 103 | mpllmodd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐷 )  →  𝑃  ∈  LMod ) | 
						
							| 105 | 11 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐷 )  →  ( 𝑋 ‘ 𝑘 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 106 | 1 5 8 | mplsca | ⊢ ( 𝜑  →  𝑅  =  ( Scalar ‘ 𝑃 ) ) | 
						
							| 107 | 106 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐷 )  →  𝑅  =  ( Scalar ‘ 𝑃 ) ) | 
						
							| 108 | 107 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐷 )  →  ( Base ‘ 𝑅 )  =  ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) | 
						
							| 109 | 105 108 | eleqtrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐷 )  →  ( 𝑋 ‘ 𝑘 )  ∈  ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) | 
						
							| 110 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐷 )  →  𝑘  ∈  𝐷 ) | 
						
							| 111 | 1 6 3 4 2 102 103 110 | mplmon | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐷 )  →  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑘 ,   1  ,   0  ) )  ∈  𝐵 ) | 
						
							| 112 |  | eqid | ⊢ ( Scalar ‘ 𝑃 )  =  ( Scalar ‘ 𝑃 ) | 
						
							| 113 |  | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑃 ) )  =  ( Base ‘ ( Scalar ‘ 𝑃 ) ) | 
						
							| 114 | 6 112 7 113 | lmodvscl | ⊢ ( ( 𝑃  ∈  LMod  ∧  ( 𝑋 ‘ 𝑘 )  ∈  ( Base ‘ ( Scalar ‘ 𝑃 ) )  ∧  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑘 ,   1  ,   0  ) )  ∈  𝐵 )  →  ( ( 𝑋 ‘ 𝑘 )  ·  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑘 ,   1  ,   0  ) ) )  ∈  𝐵 ) | 
						
							| 115 | 104 109 111 114 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐷 )  →  ( ( 𝑋 ‘ 𝑘 )  ·  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑘 ,   1  ,   0  ) ) )  ∈  𝐵 ) | 
						
							| 116 | 115 | adantlr | ⊢ ( ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐷 ) )  ∧  𝑘  ∈  𝐷 )  →  ( ( 𝑋 ‘ 𝑘 )  ·  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑘 ,   1  ,   0  ) ) )  ∈  𝐵 ) | 
						
							| 117 | 101 116 | syldan | ⊢ ( ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐷 ) )  ∧  𝑘  ∈  𝑥 )  →  ( ( 𝑋 ‘ 𝑘 )  ·  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑘 ,   1  ,   0  ) ) )  ∈  𝐵 ) | 
						
							| 118 |  | vex | ⊢ 𝑧  ∈  V | 
						
							| 119 | 118 | a1i | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐷 ) )  →  𝑧  ∈  V ) | 
						
							| 120 |  | simprlr | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐷 ) )  →  ¬  𝑧  ∈  𝑥 ) | 
						
							| 121 | 1 5 8 | mpllmodd | ⊢ ( 𝜑  →  𝑃  ∈  LMod ) | 
						
							| 122 | 121 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐷 ) )  →  𝑃  ∈  LMod ) | 
						
							| 123 | 11 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐷 ) )  →  𝑋 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 124 | 99 | unssbd | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐷 ) )  →  { 𝑧 }  ⊆  𝐷 ) | 
						
							| 125 | 118 | snss | ⊢ ( 𝑧  ∈  𝐷  ↔  { 𝑧 }  ⊆  𝐷 ) | 
						
							| 126 | 124 125 | sylibr | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐷 ) )  →  𝑧  ∈  𝐷 ) | 
						
							| 127 | 123 126 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐷 ) )  →  ( 𝑋 ‘ 𝑧 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 128 | 106 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐷 ) )  →  𝑅  =  ( Scalar ‘ 𝑃 ) ) | 
						
							| 129 | 128 | fveq2d | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐷 ) )  →  ( Base ‘ 𝑅 )  =  ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) | 
						
							| 130 | 127 129 | eleqtrd | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐷 ) )  →  ( 𝑋 ‘ 𝑧 )  ∈  ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) | 
						
							| 131 | 5 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐷 ) )  →  𝐼  ∈  𝑊 ) | 
						
							| 132 | 8 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐷 ) )  →  𝑅  ∈  Ring ) | 
						
							| 133 | 1 6 3 4 2 131 132 126 | mplmon | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐷 ) )  →  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑧 ,   1  ,   0  ) )  ∈  𝐵 ) | 
						
							| 134 | 6 112 7 113 | lmodvscl | ⊢ ( ( 𝑃  ∈  LMod  ∧  ( 𝑋 ‘ 𝑧 )  ∈  ( Base ‘ ( Scalar ‘ 𝑃 ) )  ∧  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑧 ,   1  ,   0  ) )  ∈  𝐵 )  →  ( ( 𝑋 ‘ 𝑧 )  ·  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑧 ,   1  ,   0  ) ) )  ∈  𝐵 ) | 
						
							| 135 | 122 130 133 134 | syl3anc | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐷 ) )  →  ( ( 𝑋 ‘ 𝑧 )  ·  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑧 ,   1  ,   0  ) ) )  ∈  𝐵 ) | 
						
							| 136 |  | fveq2 | ⊢ ( 𝑘  =  𝑧  →  ( 𝑋 ‘ 𝑘 )  =  ( 𝑋 ‘ 𝑧 ) ) | 
						
							| 137 |  | equequ2 | ⊢ ( 𝑘  =  𝑧  →  ( 𝑦  =  𝑘  ↔  𝑦  =  𝑧 ) ) | 
						
							| 138 | 137 | ifbid | ⊢ ( 𝑘  =  𝑧  →  if ( 𝑦  =  𝑘 ,   1  ,   0  )  =  if ( 𝑦  =  𝑧 ,   1  ,   0  ) ) | 
						
							| 139 | 138 | mpteq2dv | ⊢ ( 𝑘  =  𝑧  →  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑘 ,   1  ,   0  ) )  =  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑧 ,   1  ,   0  ) ) ) | 
						
							| 140 | 136 139 | oveq12d | ⊢ ( 𝑘  =  𝑧  →  ( ( 𝑋 ‘ 𝑘 )  ·  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑘 ,   1  ,   0  ) ) )  =  ( ( 𝑋 ‘ 𝑧 )  ·  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑧 ,   1  ,   0  ) ) ) ) | 
						
							| 141 | 6 93 97 98 117 119 120 135 140 | gsumunsn | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐷 ) )  →  ( 𝑃  Σg  ( 𝑘  ∈  ( 𝑥  ∪  { 𝑧 } )  ↦  ( ( 𝑋 ‘ 𝑘 )  ·  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑘 ,   1  ,   0  ) ) ) ) )  =  ( ( 𝑃  Σg  ( 𝑘  ∈  𝑥  ↦  ( ( 𝑋 ‘ 𝑘 )  ·  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑘 ,   1  ,   0  ) ) ) ) ) ( +g ‘ 𝑃 ) ( ( 𝑋 ‘ 𝑧 )  ·  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑧 ,   1  ,   0  ) ) ) ) ) | 
						
							| 142 |  | eqid | ⊢ ( +g ‘ 𝑅 )  =  ( +g ‘ 𝑅 ) | 
						
							| 143 | 123 | ffvelcdmda | ⊢ ( ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐷 ) )  ∧  𝑦  ∈  𝐷 )  →  ( 𝑋 ‘ 𝑦 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 144 | 10 3 | ring0cl | ⊢ ( 𝑅  ∈  Ring  →   0   ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 145 | 8 144 | syl | ⊢ ( 𝜑  →   0   ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 146 | 145 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐷 ) )  ∧  𝑦  ∈  𝐷 )  →   0   ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 147 | 143 146 | ifcld | ⊢ ( ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐷 ) )  ∧  𝑦  ∈  𝐷 )  →  if ( 𝑦  ∈  𝑥 ,  ( 𝑋 ‘ 𝑦 ) ,   0  )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 148 | 147 | fmpttd | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐷 ) )  →  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  ∈  𝑥 ,  ( 𝑋 ‘ 𝑦 ) ,   0  ) ) : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 149 |  | fvex | ⊢ ( Base ‘ 𝑅 )  ∈  V | 
						
							| 150 | 149 18 | elmap | ⊢ ( ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  ∈  𝑥 ,  ( 𝑋 ‘ 𝑦 ) ,   0  ) )  ∈  ( ( Base ‘ 𝑅 )  ↑m  𝐷 )  ↔  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  ∈  𝑥 ,  ( 𝑋 ‘ 𝑦 ) ,   0  ) ) : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 151 | 148 150 | sylibr | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐷 ) )  →  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  ∈  𝑥 ,  ( 𝑋 ‘ 𝑦 ) ,   0  ) )  ∈  ( ( Base ‘ 𝑅 )  ↑m  𝐷 ) ) | 
						
							| 152 | 33 10 2 34 131 | psrbas | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐷 ) )  →  ( Base ‘ ( 𝐼  mPwSer  𝑅 ) )  =  ( ( Base ‘ 𝑅 )  ↑m  𝐷 ) ) | 
						
							| 153 | 151 152 | eleqtrrd | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐷 ) )  →  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  ∈  𝑥 ,  ( 𝑋 ‘ 𝑦 ) ,   0  ) )  ∈  ( Base ‘ ( 𝐼  mPwSer  𝑅 ) ) ) | 
						
							| 154 | 18 | mptex | ⊢ ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  ∈  𝑥 ,  ( 𝑋 ‘ 𝑦 ) ,   0  ) )  ∈  V | 
						
							| 155 |  | funmpt | ⊢ Fun  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  ∈  𝑥 ,  ( 𝑋 ‘ 𝑦 ) ,   0  ) ) | 
						
							| 156 | 154 155 20 | 3pm3.2i | ⊢ ( ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  ∈  𝑥 ,  ( 𝑋 ‘ 𝑦 ) ,   0  ) )  ∈  V  ∧  Fun  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  ∈  𝑥 ,  ( 𝑋 ‘ 𝑦 ) ,   0  ) )  ∧   0   ∈  V ) | 
						
							| 157 | 156 | a1i | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐷 ) )  →  ( ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  ∈  𝑥 ,  ( 𝑋 ‘ 𝑦 ) ,   0  ) )  ∈  V  ∧  Fun  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  ∈  𝑥 ,  ( 𝑋 ‘ 𝑦 ) ,   0  ) )  ∧   0   ∈  V ) ) | 
						
							| 158 |  | eldifn | ⊢ ( 𝑦  ∈  ( 𝐷  ∖  𝑥 )  →  ¬  𝑦  ∈  𝑥 ) | 
						
							| 159 | 158 | adantl | ⊢ ( ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐷 ) )  ∧  𝑦  ∈  ( 𝐷  ∖  𝑥 ) )  →  ¬  𝑦  ∈  𝑥 ) | 
						
							| 160 | 159 | iffalsed | ⊢ ( ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐷 ) )  ∧  𝑦  ∈  ( 𝐷  ∖  𝑥 ) )  →  if ( 𝑦  ∈  𝑥 ,  ( 𝑋 ‘ 𝑦 ) ,   0  )  =   0  ) | 
						
							| 161 | 18 | a1i | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐷 ) )  →  𝐷  ∈  V ) | 
						
							| 162 | 160 161 | suppss2 | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐷 ) )  →  ( ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  ∈  𝑥 ,  ( 𝑋 ‘ 𝑦 ) ,   0  ) )  supp   0  )  ⊆  𝑥 ) | 
						
							| 163 |  | suppssfifsupp | ⊢ ( ( ( ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  ∈  𝑥 ,  ( 𝑋 ‘ 𝑦 ) ,   0  ) )  ∈  V  ∧  Fun  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  ∈  𝑥 ,  ( 𝑋 ‘ 𝑦 ) ,   0  ) )  ∧   0   ∈  V )  ∧  ( 𝑥  ∈  Fin  ∧  ( ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  ∈  𝑥 ,  ( 𝑋 ‘ 𝑦 ) ,   0  ) )  supp   0  )  ⊆  𝑥 ) )  →  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  ∈  𝑥 ,  ( 𝑋 ‘ 𝑦 ) ,   0  ) )  finSupp   0  ) | 
						
							| 164 | 157 98 162 163 | syl12anc | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐷 ) )  →  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  ∈  𝑥 ,  ( 𝑋 ‘ 𝑦 ) ,   0  ) )  finSupp   0  ) | 
						
							| 165 | 1 33 34 3 6 | mplelbas | ⊢ ( ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  ∈  𝑥 ,  ( 𝑋 ‘ 𝑦 ) ,   0  ) )  ∈  𝐵  ↔  ( ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  ∈  𝑥 ,  ( 𝑋 ‘ 𝑦 ) ,   0  ) )  ∈  ( Base ‘ ( 𝐼  mPwSer  𝑅 ) )  ∧  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  ∈  𝑥 ,  ( 𝑋 ‘ 𝑦 ) ,   0  ) )  finSupp   0  ) ) | 
						
							| 166 | 153 164 165 | sylanbrc | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐷 ) )  →  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  ∈  𝑥 ,  ( 𝑋 ‘ 𝑦 ) ,   0  ) )  ∈  𝐵 ) | 
						
							| 167 | 1 6 142 93 166 135 | mpladd | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐷 ) )  →  ( ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  ∈  𝑥 ,  ( 𝑋 ‘ 𝑦 ) ,   0  ) ) ( +g ‘ 𝑃 ) ( ( 𝑋 ‘ 𝑧 )  ·  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑧 ,   1  ,   0  ) ) ) )  =  ( ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  ∈  𝑥 ,  ( 𝑋 ‘ 𝑦 ) ,   0  ) )  ∘f  ( +g ‘ 𝑅 ) ( ( 𝑋 ‘ 𝑧 )  ·  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑧 ,   1  ,   0  ) ) ) ) ) | 
						
							| 168 |  | ovexd | ⊢ ( ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐷 ) )  ∧  𝑦  ∈  𝐷 )  →  ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) if ( 𝑦  =  𝑧 ,   1  ,   0  ) )  ∈  V ) | 
						
							| 169 |  | eqidd | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐷 ) )  →  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  ∈  𝑥 ,  ( 𝑋 ‘ 𝑦 ) ,   0  ) )  =  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  ∈  𝑥 ,  ( 𝑋 ‘ 𝑦 ) ,   0  ) ) ) | 
						
							| 170 |  | eqid | ⊢ ( .r ‘ 𝑅 )  =  ( .r ‘ 𝑅 ) | 
						
							| 171 | 1 7 10 6 170 2 127 133 | mplvsca | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐷 ) )  →  ( ( 𝑋 ‘ 𝑧 )  ·  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑧 ,   1  ,   0  ) ) )  =  ( ( 𝐷  ×  { ( 𝑋 ‘ 𝑧 ) } )  ∘f  ( .r ‘ 𝑅 ) ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑧 ,   1  ,   0  ) ) ) ) | 
						
							| 172 | 127 | adantr | ⊢ ( ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐷 ) )  ∧  𝑦  ∈  𝐷 )  →  ( 𝑋 ‘ 𝑧 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 173 | 10 4 | ringidcl | ⊢ ( 𝑅  ∈  Ring  →   1   ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 174 | 173 144 | ifcld | ⊢ ( 𝑅  ∈  Ring  →  if ( 𝑦  =  𝑧 ,   1  ,   0  )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 175 | 8 174 | syl | ⊢ ( 𝜑  →  if ( 𝑦  =  𝑧 ,   1  ,   0  )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 176 | 175 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐷 ) )  ∧  𝑦  ∈  𝐷 )  →  if ( 𝑦  =  𝑧 ,   1  ,   0  )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 177 |  | fconstmpt | ⊢ ( 𝐷  ×  { ( 𝑋 ‘ 𝑧 ) } )  =  ( 𝑦  ∈  𝐷  ↦  ( 𝑋 ‘ 𝑧 ) ) | 
						
							| 178 | 177 | a1i | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐷 ) )  →  ( 𝐷  ×  { ( 𝑋 ‘ 𝑧 ) } )  =  ( 𝑦  ∈  𝐷  ↦  ( 𝑋 ‘ 𝑧 ) ) ) | 
						
							| 179 |  | eqidd | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐷 ) )  →  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑧 ,   1  ,   0  ) )  =  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑧 ,   1  ,   0  ) ) ) | 
						
							| 180 | 161 172 176 178 179 | offval2 | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐷 ) )  →  ( ( 𝐷  ×  { ( 𝑋 ‘ 𝑧 ) } )  ∘f  ( .r ‘ 𝑅 ) ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑧 ,   1  ,   0  ) ) )  =  ( 𝑦  ∈  𝐷  ↦  ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) if ( 𝑦  =  𝑧 ,   1  ,   0  ) ) ) ) | 
						
							| 181 | 171 180 | eqtrd | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐷 ) )  →  ( ( 𝑋 ‘ 𝑧 )  ·  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑧 ,   1  ,   0  ) ) )  =  ( 𝑦  ∈  𝐷  ↦  ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) if ( 𝑦  =  𝑧 ,   1  ,   0  ) ) ) ) | 
						
							| 182 | 161 147 168 169 181 | offval2 | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐷 ) )  →  ( ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  ∈  𝑥 ,  ( 𝑋 ‘ 𝑦 ) ,   0  ) )  ∘f  ( +g ‘ 𝑅 ) ( ( 𝑋 ‘ 𝑧 )  ·  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑧 ,   1  ,   0  ) ) ) )  =  ( 𝑦  ∈  𝐷  ↦  ( if ( 𝑦  ∈  𝑥 ,  ( 𝑋 ‘ 𝑦 ) ,   0  ) ( +g ‘ 𝑅 ) ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) if ( 𝑦  =  𝑧 ,   1  ,   0  ) ) ) ) ) | 
						
							| 183 | 132 82 | syl | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐷 ) )  →  𝑅  ∈  Grp ) | 
						
							| 184 | 10 142 3 | grplid | ⊢ ( ( 𝑅  ∈  Grp  ∧  ( 𝑋 ‘ 𝑧 )  ∈  ( Base ‘ 𝑅 ) )  →  (  0  ( +g ‘ 𝑅 ) ( 𝑋 ‘ 𝑧 ) )  =  ( 𝑋 ‘ 𝑧 ) ) | 
						
							| 185 | 183 127 184 | syl2anc | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐷 ) )  →  (  0  ( +g ‘ 𝑅 ) ( 𝑋 ‘ 𝑧 ) )  =  ( 𝑋 ‘ 𝑧 ) ) | 
						
							| 186 | 185 | ad2antrr | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐷 ) )  ∧  𝑦  ∈  𝐷 )  ∧  𝑦  ∈  { 𝑧 } )  →  (  0  ( +g ‘ 𝑅 ) ( 𝑋 ‘ 𝑧 ) )  =  ( 𝑋 ‘ 𝑧 ) ) | 
						
							| 187 |  | simpr | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐷 ) )  ∧  𝑦  ∈  𝐷 )  ∧  𝑦  ∈  { 𝑧 } )  →  𝑦  ∈  { 𝑧 } ) | 
						
							| 188 |  | velsn | ⊢ ( 𝑦  ∈  { 𝑧 }  ↔  𝑦  =  𝑧 ) | 
						
							| 189 | 187 188 | sylib | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐷 ) )  ∧  𝑦  ∈  𝐷 )  ∧  𝑦  ∈  { 𝑧 } )  →  𝑦  =  𝑧 ) | 
						
							| 190 | 189 | fveq2d | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐷 ) )  ∧  𝑦  ∈  𝐷 )  ∧  𝑦  ∈  { 𝑧 } )  →  ( 𝑋 ‘ 𝑦 )  =  ( 𝑋 ‘ 𝑧 ) ) | 
						
							| 191 | 186 190 | eqtr4d | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐷 ) )  ∧  𝑦  ∈  𝐷 )  ∧  𝑦  ∈  { 𝑧 } )  →  (  0  ( +g ‘ 𝑅 ) ( 𝑋 ‘ 𝑧 ) )  =  ( 𝑋 ‘ 𝑦 ) ) | 
						
							| 192 | 120 | ad2antrr | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐷 ) )  ∧  𝑦  ∈  𝐷 )  ∧  𝑦  ∈  { 𝑧 } )  →  ¬  𝑧  ∈  𝑥 ) | 
						
							| 193 | 189 192 | eqneltrd | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐷 ) )  ∧  𝑦  ∈  𝐷 )  ∧  𝑦  ∈  { 𝑧 } )  →  ¬  𝑦  ∈  𝑥 ) | 
						
							| 194 | 193 | iffalsed | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐷 ) )  ∧  𝑦  ∈  𝐷 )  ∧  𝑦  ∈  { 𝑧 } )  →  if ( 𝑦  ∈  𝑥 ,  ( 𝑋 ‘ 𝑦 ) ,   0  )  =   0  ) | 
						
							| 195 | 189 | iftrued | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐷 ) )  ∧  𝑦  ∈  𝐷 )  ∧  𝑦  ∈  { 𝑧 } )  →  if ( 𝑦  =  𝑧 ,   1  ,   0  )  =   1  ) | 
						
							| 196 | 195 | oveq2d | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐷 ) )  ∧  𝑦  ∈  𝐷 )  ∧  𝑦  ∈  { 𝑧 } )  →  ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) if ( 𝑦  =  𝑧 ,   1  ,   0  ) )  =  ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 )  1  ) ) | 
						
							| 197 | 10 170 4 | ringridm | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝑋 ‘ 𝑧 )  ∈  ( Base ‘ 𝑅 ) )  →  ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 )  1  )  =  ( 𝑋 ‘ 𝑧 ) ) | 
						
							| 198 | 132 127 197 | syl2anc | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐷 ) )  →  ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 )  1  )  =  ( 𝑋 ‘ 𝑧 ) ) | 
						
							| 199 | 198 | ad2antrr | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐷 ) )  ∧  𝑦  ∈  𝐷 )  ∧  𝑦  ∈  { 𝑧 } )  →  ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 )  1  )  =  ( 𝑋 ‘ 𝑧 ) ) | 
						
							| 200 | 196 199 | eqtrd | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐷 ) )  ∧  𝑦  ∈  𝐷 )  ∧  𝑦  ∈  { 𝑧 } )  →  ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) if ( 𝑦  =  𝑧 ,   1  ,   0  ) )  =  ( 𝑋 ‘ 𝑧 ) ) | 
						
							| 201 | 194 200 | oveq12d | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐷 ) )  ∧  𝑦  ∈  𝐷 )  ∧  𝑦  ∈  { 𝑧 } )  →  ( if ( 𝑦  ∈  𝑥 ,  ( 𝑋 ‘ 𝑦 ) ,   0  ) ( +g ‘ 𝑅 ) ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) if ( 𝑦  =  𝑧 ,   1  ,   0  ) ) )  =  (  0  ( +g ‘ 𝑅 ) ( 𝑋 ‘ 𝑧 ) ) ) | 
						
							| 202 |  | elun2 | ⊢ ( 𝑦  ∈  { 𝑧 }  →  𝑦  ∈  ( 𝑥  ∪  { 𝑧 } ) ) | 
						
							| 203 | 202 | adantl | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐷 ) )  ∧  𝑦  ∈  𝐷 )  ∧  𝑦  ∈  { 𝑧 } )  →  𝑦  ∈  ( 𝑥  ∪  { 𝑧 } ) ) | 
						
							| 204 | 203 | iftrued | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐷 ) )  ∧  𝑦  ∈  𝐷 )  ∧  𝑦  ∈  { 𝑧 } )  →  if ( 𝑦  ∈  ( 𝑥  ∪  { 𝑧 } ) ,  ( 𝑋 ‘ 𝑦 ) ,   0  )  =  ( 𝑋 ‘ 𝑦 ) ) | 
						
							| 205 | 191 201 204 | 3eqtr4d | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐷 ) )  ∧  𝑦  ∈  𝐷 )  ∧  𝑦  ∈  { 𝑧 } )  →  ( if ( 𝑦  ∈  𝑥 ,  ( 𝑋 ‘ 𝑦 ) ,   0  ) ( +g ‘ 𝑅 ) ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) if ( 𝑦  =  𝑧 ,   1  ,   0  ) ) )  =  if ( 𝑦  ∈  ( 𝑥  ∪  { 𝑧 } ) ,  ( 𝑋 ‘ 𝑦 ) ,   0  ) ) | 
						
							| 206 | 83 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐷 ) )  ∧  𝑦  ∈  𝐷 )  →  𝑅  ∈  Grp ) | 
						
							| 207 | 10 142 3 | grprid | ⊢ ( ( 𝑅  ∈  Grp  ∧  if ( 𝑦  ∈  𝑥 ,  ( 𝑋 ‘ 𝑦 ) ,   0  )  ∈  ( Base ‘ 𝑅 ) )  →  ( if ( 𝑦  ∈  𝑥 ,  ( 𝑋 ‘ 𝑦 ) ,   0  ) ( +g ‘ 𝑅 )  0  )  =  if ( 𝑦  ∈  𝑥 ,  ( 𝑋 ‘ 𝑦 ) ,   0  ) ) | 
						
							| 208 | 206 147 207 | syl2anc | ⊢ ( ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐷 ) )  ∧  𝑦  ∈  𝐷 )  →  ( if ( 𝑦  ∈  𝑥 ,  ( 𝑋 ‘ 𝑦 ) ,   0  ) ( +g ‘ 𝑅 )  0  )  =  if ( 𝑦  ∈  𝑥 ,  ( 𝑋 ‘ 𝑦 ) ,   0  ) ) | 
						
							| 209 | 208 | adantr | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐷 ) )  ∧  𝑦  ∈  𝐷 )  ∧  ¬  𝑦  ∈  { 𝑧 } )  →  ( if ( 𝑦  ∈  𝑥 ,  ( 𝑋 ‘ 𝑦 ) ,   0  ) ( +g ‘ 𝑅 )  0  )  =  if ( 𝑦  ∈  𝑥 ,  ( 𝑋 ‘ 𝑦 ) ,   0  ) ) | 
						
							| 210 |  | simpr | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐷 ) )  ∧  𝑦  ∈  𝐷 )  ∧  ¬  𝑦  ∈  { 𝑧 } )  →  ¬  𝑦  ∈  { 𝑧 } ) | 
						
							| 211 | 210 188 | sylnib | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐷 ) )  ∧  𝑦  ∈  𝐷 )  ∧  ¬  𝑦  ∈  { 𝑧 } )  →  ¬  𝑦  =  𝑧 ) | 
						
							| 212 | 211 | iffalsed | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐷 ) )  ∧  𝑦  ∈  𝐷 )  ∧  ¬  𝑦  ∈  { 𝑧 } )  →  if ( 𝑦  =  𝑧 ,   1  ,   0  )  =   0  ) | 
						
							| 213 | 212 | oveq2d | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐷 ) )  ∧  𝑦  ∈  𝐷 )  ∧  ¬  𝑦  ∈  { 𝑧 } )  →  ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) if ( 𝑦  =  𝑧 ,   1  ,   0  ) )  =  ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 )  0  ) ) | 
						
							| 214 | 10 170 3 | ringrz | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝑋 ‘ 𝑧 )  ∈  ( Base ‘ 𝑅 ) )  →  ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 )  0  )  =   0  ) | 
						
							| 215 | 132 127 214 | syl2anc | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐷 ) )  →  ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 )  0  )  =   0  ) | 
						
							| 216 | 215 | ad2antrr | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐷 ) )  ∧  𝑦  ∈  𝐷 )  ∧  ¬  𝑦  ∈  { 𝑧 } )  →  ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 )  0  )  =   0  ) | 
						
							| 217 | 213 216 | eqtrd | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐷 ) )  ∧  𝑦  ∈  𝐷 )  ∧  ¬  𝑦  ∈  { 𝑧 } )  →  ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) if ( 𝑦  =  𝑧 ,   1  ,   0  ) )  =   0  ) | 
						
							| 218 | 217 | oveq2d | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐷 ) )  ∧  𝑦  ∈  𝐷 )  ∧  ¬  𝑦  ∈  { 𝑧 } )  →  ( if ( 𝑦  ∈  𝑥 ,  ( 𝑋 ‘ 𝑦 ) ,   0  ) ( +g ‘ 𝑅 ) ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) if ( 𝑦  =  𝑧 ,   1  ,   0  ) ) )  =  ( if ( 𝑦  ∈  𝑥 ,  ( 𝑋 ‘ 𝑦 ) ,   0  ) ( +g ‘ 𝑅 )  0  ) ) | 
						
							| 219 |  | elun | ⊢ ( 𝑦  ∈  ( 𝑥  ∪  { 𝑧 } )  ↔  ( 𝑦  ∈  𝑥  ∨  𝑦  ∈  { 𝑧 } ) ) | 
						
							| 220 |  | orcom | ⊢ ( ( 𝑦  ∈  𝑥  ∨  𝑦  ∈  { 𝑧 } )  ↔  ( 𝑦  ∈  { 𝑧 }  ∨  𝑦  ∈  𝑥 ) ) | 
						
							| 221 | 219 220 | bitri | ⊢ ( 𝑦  ∈  ( 𝑥  ∪  { 𝑧 } )  ↔  ( 𝑦  ∈  { 𝑧 }  ∨  𝑦  ∈  𝑥 ) ) | 
						
							| 222 |  | biorf | ⊢ ( ¬  𝑦  ∈  { 𝑧 }  →  ( 𝑦  ∈  𝑥  ↔  ( 𝑦  ∈  { 𝑧 }  ∨  𝑦  ∈  𝑥 ) ) ) | 
						
							| 223 | 221 222 | bitr4id | ⊢ ( ¬  𝑦  ∈  { 𝑧 }  →  ( 𝑦  ∈  ( 𝑥  ∪  { 𝑧 } )  ↔  𝑦  ∈  𝑥 ) ) | 
						
							| 224 | 223 | adantl | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐷 ) )  ∧  𝑦  ∈  𝐷 )  ∧  ¬  𝑦  ∈  { 𝑧 } )  →  ( 𝑦  ∈  ( 𝑥  ∪  { 𝑧 } )  ↔  𝑦  ∈  𝑥 ) ) | 
						
							| 225 | 224 | ifbid | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐷 ) )  ∧  𝑦  ∈  𝐷 )  ∧  ¬  𝑦  ∈  { 𝑧 } )  →  if ( 𝑦  ∈  ( 𝑥  ∪  { 𝑧 } ) ,  ( 𝑋 ‘ 𝑦 ) ,   0  )  =  if ( 𝑦  ∈  𝑥 ,  ( 𝑋 ‘ 𝑦 ) ,   0  ) ) | 
						
							| 226 | 209 218 225 | 3eqtr4d | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐷 ) )  ∧  𝑦  ∈  𝐷 )  ∧  ¬  𝑦  ∈  { 𝑧 } )  →  ( if ( 𝑦  ∈  𝑥 ,  ( 𝑋 ‘ 𝑦 ) ,   0  ) ( +g ‘ 𝑅 ) ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) if ( 𝑦  =  𝑧 ,   1  ,   0  ) ) )  =  if ( 𝑦  ∈  ( 𝑥  ∪  { 𝑧 } ) ,  ( 𝑋 ‘ 𝑦 ) ,   0  ) ) | 
						
							| 227 | 205 226 | pm2.61dan | ⊢ ( ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐷 ) )  ∧  𝑦  ∈  𝐷 )  →  ( if ( 𝑦  ∈  𝑥 ,  ( 𝑋 ‘ 𝑦 ) ,   0  ) ( +g ‘ 𝑅 ) ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) if ( 𝑦  =  𝑧 ,   1  ,   0  ) ) )  =  if ( 𝑦  ∈  ( 𝑥  ∪  { 𝑧 } ) ,  ( 𝑋 ‘ 𝑦 ) ,   0  ) ) | 
						
							| 228 | 227 | mpteq2dva | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐷 ) )  →  ( 𝑦  ∈  𝐷  ↦  ( if ( 𝑦  ∈  𝑥 ,  ( 𝑋 ‘ 𝑦 ) ,   0  ) ( +g ‘ 𝑅 ) ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) if ( 𝑦  =  𝑧 ,   1  ,   0  ) ) ) )  =  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  ∈  ( 𝑥  ∪  { 𝑧 } ) ,  ( 𝑋 ‘ 𝑦 ) ,   0  ) ) ) | 
						
							| 229 | 167 182 228 | 3eqtrrd | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐷 ) )  →  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  ∈  ( 𝑥  ∪  { 𝑧 } ) ,  ( 𝑋 ‘ 𝑦 ) ,   0  ) )  =  ( ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  ∈  𝑥 ,  ( 𝑋 ‘ 𝑦 ) ,   0  ) ) ( +g ‘ 𝑃 ) ( ( 𝑋 ‘ 𝑧 )  ·  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑧 ,   1  ,   0  ) ) ) ) ) | 
						
							| 230 | 141 229 | eqeq12d | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐷 ) )  →  ( ( 𝑃  Σg  ( 𝑘  ∈  ( 𝑥  ∪  { 𝑧 } )  ↦  ( ( 𝑋 ‘ 𝑘 )  ·  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑘 ,   1  ,   0  ) ) ) ) )  =  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  ∈  ( 𝑥  ∪  { 𝑧 } ) ,  ( 𝑋 ‘ 𝑦 ) ,   0  ) )  ↔  ( ( 𝑃  Σg  ( 𝑘  ∈  𝑥  ↦  ( ( 𝑋 ‘ 𝑘 )  ·  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑘 ,   1  ,   0  ) ) ) ) ) ( +g ‘ 𝑃 ) ( ( 𝑋 ‘ 𝑧 )  ·  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑧 ,   1  ,   0  ) ) ) )  =  ( ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  ∈  𝑥 ,  ( 𝑋 ‘ 𝑦 ) ,   0  ) ) ( +g ‘ 𝑃 ) ( ( 𝑋 ‘ 𝑧 )  ·  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑧 ,   1  ,   0  ) ) ) ) ) ) | 
						
							| 231 | 92 230 | imbitrrid | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐷 ) )  →  ( ( 𝑃  Σg  ( 𝑘  ∈  𝑥  ↦  ( ( 𝑋 ‘ 𝑘 )  ·  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑘 ,   1  ,   0  ) ) ) ) )  =  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  ∈  𝑥 ,  ( 𝑋 ‘ 𝑦 ) ,   0  ) )  →  ( 𝑃  Σg  ( 𝑘  ∈  ( 𝑥  ∪  { 𝑧 } )  ↦  ( ( 𝑋 ‘ 𝑘 )  ·  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑘 ,   1  ,   0  ) ) ) ) )  =  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  ∈  ( 𝑥  ∪  { 𝑧 } ) ,  ( 𝑋 ‘ 𝑦 ) ,   0  ) ) ) ) | 
						
							| 232 | 231 | expr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 ) )  →  ( ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐷  →  ( ( 𝑃  Σg  ( 𝑘  ∈  𝑥  ↦  ( ( 𝑋 ‘ 𝑘 )  ·  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑘 ,   1  ,   0  ) ) ) ) )  =  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  ∈  𝑥 ,  ( 𝑋 ‘ 𝑦 ) ,   0  ) )  →  ( 𝑃  Σg  ( 𝑘  ∈  ( 𝑥  ∪  { 𝑧 } )  ↦  ( ( 𝑋 ‘ 𝑘 )  ·  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑘 ,   1  ,   0  ) ) ) ) )  =  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  ∈  ( 𝑥  ∪  { 𝑧 } ) ,  ( 𝑋 ‘ 𝑦 ) ,   0  ) ) ) ) ) | 
						
							| 233 | 232 | a2d | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 ) )  →  ( ( ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐷  →  ( 𝑃  Σg  ( 𝑘  ∈  𝑥  ↦  ( ( 𝑋 ‘ 𝑘 )  ·  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑘 ,   1  ,   0  ) ) ) ) )  =  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  ∈  𝑥 ,  ( 𝑋 ‘ 𝑦 ) ,   0  ) ) )  →  ( ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐷  →  ( 𝑃  Σg  ( 𝑘  ∈  ( 𝑥  ∪  { 𝑧 } )  ↦  ( ( 𝑋 ‘ 𝑘 )  ·  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑘 ,   1  ,   0  ) ) ) ) )  =  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  ∈  ( 𝑥  ∪  { 𝑧 } ) ,  ( 𝑋 ‘ 𝑦 ) ,   0  ) ) ) ) ) | 
						
							| 234 | 91 233 | syl5 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 ) )  →  ( ( 𝑥  ⊆  𝐷  →  ( 𝑃  Σg  ( 𝑘  ∈  𝑥  ↦  ( ( 𝑋 ‘ 𝑘 )  ·  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑘 ,   1  ,   0  ) ) ) ) )  =  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  ∈  𝑥 ,  ( 𝑋 ‘ 𝑦 ) ,   0  ) ) )  →  ( ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐷  →  ( 𝑃  Σg  ( 𝑘  ∈  ( 𝑥  ∪  { 𝑧 } )  ↦  ( ( 𝑋 ‘ 𝑘 )  ·  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑘 ,   1  ,   0  ) ) ) ) )  =  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  ∈  ( 𝑥  ∪  { 𝑧 } ) ,  ( 𝑋 ‘ 𝑦 ) ,   0  ) ) ) ) ) | 
						
							| 235 | 234 | expcom | ⊢ ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  →  ( 𝜑  →  ( ( 𝑥  ⊆  𝐷  →  ( 𝑃  Σg  ( 𝑘  ∈  𝑥  ↦  ( ( 𝑋 ‘ 𝑘 )  ·  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑘 ,   1  ,   0  ) ) ) ) )  =  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  ∈  𝑥 ,  ( 𝑋 ‘ 𝑦 ) ,   0  ) ) )  →  ( ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐷  →  ( 𝑃  Σg  ( 𝑘  ∈  ( 𝑥  ∪  { 𝑧 } )  ↦  ( ( 𝑋 ‘ 𝑘 )  ·  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑘 ,   1  ,   0  ) ) ) ) )  =  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  ∈  ( 𝑥  ∪  { 𝑧 } ) ,  ( 𝑋 ‘ 𝑦 ) ,   0  ) ) ) ) ) ) | 
						
							| 236 | 235 | a2d | ⊢ ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  →  ( ( 𝜑  →  ( 𝑥  ⊆  𝐷  →  ( 𝑃  Σg  ( 𝑘  ∈  𝑥  ↦  ( ( 𝑋 ‘ 𝑘 )  ·  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑘 ,   1  ,   0  ) ) ) ) )  =  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  ∈  𝑥 ,  ( 𝑋 ‘ 𝑦 ) ,   0  ) ) ) )  →  ( 𝜑  →  ( ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐷  →  ( 𝑃  Σg  ( 𝑘  ∈  ( 𝑥  ∪  { 𝑧 } )  ↦  ( ( 𝑋 ‘ 𝑘 )  ·  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑘 ,   1  ,   0  ) ) ) ) )  =  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  ∈  ( 𝑥  ∪  { 𝑧 } ) ,  ( 𝑋 ‘ 𝑦 ) ,   0  ) ) ) ) ) ) | 
						
							| 237 | 54 63 72 81 87 236 | findcard2s | ⊢ ( ( 𝑋  supp   0  )  ∈  Fin  →  ( 𝜑  →  ( ( 𝑋  supp   0  )  ⊆  𝐷  →  ( 𝑃  Σg  ( 𝑘  ∈  ( 𝑋  supp   0  )  ↦  ( ( 𝑋 ‘ 𝑘 )  ·  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑘 ,   1  ,   0  ) ) ) ) )  =  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  ∈  ( 𝑋  supp   0  ) ,  ( 𝑋 ‘ 𝑦 ) ,   0  ) ) ) ) ) | 
						
							| 238 | 38 237 | mpcom | ⊢ ( 𝜑  →  ( ( 𝑋  supp   0  )  ⊆  𝐷  →  ( 𝑃  Σg  ( 𝑘  ∈  ( 𝑋  supp   0  )  ↦  ( ( 𝑋 ‘ 𝑘 )  ·  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑘 ,   1  ,   0  ) ) ) ) )  =  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  ∈  ( 𝑋  supp   0  ) ,  ( 𝑋 ‘ 𝑦 ) ,   0  ) ) ) ) | 
						
							| 239 | 32 238 | mpd | ⊢ ( 𝜑  →  ( 𝑃  Σg  ( 𝑘  ∈  ( 𝑋  supp   0  )  ↦  ( ( 𝑋 ‘ 𝑘 )  ·  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑘 ,   1  ,   0  ) ) ) ) )  =  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  ∈  ( 𝑋  supp   0  ) ,  ( 𝑋 ‘ 𝑦 ) ,   0  ) ) ) | 
						
							| 240 | 30 239 | eqtr4d | ⊢ ( 𝜑  →  𝑋  =  ( 𝑃  Σg  ( 𝑘  ∈  ( 𝑋  supp   0  )  ↦  ( ( 𝑋 ‘ 𝑘 )  ·  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑘 ,   1  ,   0  ) ) ) ) ) ) | 
						
							| 241 | 32 | resmptd | ⊢ ( 𝜑  →  ( ( 𝑘  ∈  𝐷  ↦  ( ( 𝑋 ‘ 𝑘 )  ·  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑘 ,   1  ,   0  ) ) ) )  ↾  ( 𝑋  supp   0  ) )  =  ( 𝑘  ∈  ( 𝑋  supp   0  )  ↦  ( ( 𝑋 ‘ 𝑘 )  ·  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑘 ,   1  ,   0  ) ) ) ) ) | 
						
							| 242 | 241 | oveq2d | ⊢ ( 𝜑  →  ( 𝑃  Σg  ( ( 𝑘  ∈  𝐷  ↦  ( ( 𝑋 ‘ 𝑘 )  ·  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑘 ,   1  ,   0  ) ) ) )  ↾  ( 𝑋  supp   0  ) ) )  =  ( 𝑃  Σg  ( 𝑘  ∈  ( 𝑋  supp   0  )  ↦  ( ( 𝑋 ‘ 𝑘 )  ·  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑘 ,   1  ,   0  ) ) ) ) ) ) | 
						
							| 243 | 115 | fmpttd | ⊢ ( 𝜑  →  ( 𝑘  ∈  𝐷  ↦  ( ( 𝑋 ‘ 𝑘 )  ·  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑘 ,   1  ,   0  ) ) ) ) : 𝐷 ⟶ 𝐵 ) | 
						
							| 244 | 11 16 19 21 | suppssr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝐷  ∖  ( 𝑋  supp   0  ) ) )  →  ( 𝑋 ‘ 𝑘 )  =   0  ) | 
						
							| 245 | 244 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝐷  ∖  ( 𝑋  supp   0  ) ) )  →  ( ( 𝑋 ‘ 𝑘 )  ·  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑘 ,   1  ,   0  ) ) )  =  (  0   ·  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑘 ,   1  ,   0  ) ) ) ) | 
						
							| 246 |  | eldifi | ⊢ ( 𝑘  ∈  ( 𝐷  ∖  ( 𝑋  supp   0  ) )  →  𝑘  ∈  𝐷 ) | 
						
							| 247 | 107 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐷 )  →  ( 0g ‘ 𝑅 )  =  ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ) | 
						
							| 248 | 3 247 | eqtrid | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐷 )  →   0   =  ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ) | 
						
							| 249 | 248 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐷 )  →  (  0   ·  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑘 ,   1  ,   0  ) ) )  =  ( ( 0g ‘ ( Scalar ‘ 𝑃 ) )  ·  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑘 ,   1  ,   0  ) ) ) ) | 
						
							| 250 |  | eqid | ⊢ ( 0g ‘ ( Scalar ‘ 𝑃 ) )  =  ( 0g ‘ ( Scalar ‘ 𝑃 ) ) | 
						
							| 251 | 6 112 7 250 44 | lmod0vs | ⊢ ( ( 𝑃  ∈  LMod  ∧  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑘 ,   1  ,   0  ) )  ∈  𝐵 )  →  ( ( 0g ‘ ( Scalar ‘ 𝑃 ) )  ·  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑘 ,   1  ,   0  ) ) )  =  ( 0g ‘ 𝑃 ) ) | 
						
							| 252 | 104 111 251 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐷 )  →  ( ( 0g ‘ ( Scalar ‘ 𝑃 ) )  ·  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑘 ,   1  ,   0  ) ) )  =  ( 0g ‘ 𝑃 ) ) | 
						
							| 253 | 249 252 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐷 )  →  (  0   ·  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑘 ,   1  ,   0  ) ) )  =  ( 0g ‘ 𝑃 ) ) | 
						
							| 254 | 246 253 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝐷  ∖  ( 𝑋  supp   0  ) ) )  →  (  0   ·  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑘 ,   1  ,   0  ) ) )  =  ( 0g ‘ 𝑃 ) ) | 
						
							| 255 | 245 254 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝐷  ∖  ( 𝑋  supp   0  ) ) )  →  ( ( 𝑋 ‘ 𝑘 )  ·  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑘 ,   1  ,   0  ) ) )  =  ( 0g ‘ 𝑃 ) ) | 
						
							| 256 | 255 19 | suppss2 | ⊢ ( 𝜑  →  ( ( 𝑘  ∈  𝐷  ↦  ( ( 𝑋 ‘ 𝑘 )  ·  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑘 ,   1  ,   0  ) ) ) )  supp  ( 0g ‘ 𝑃 ) )  ⊆  ( 𝑋  supp   0  ) ) | 
						
							| 257 | 18 | mptex | ⊢ ( 𝑘  ∈  𝐷  ↦  ( ( 𝑋 ‘ 𝑘 )  ·  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑘 ,   1  ,   0  ) ) ) )  ∈  V | 
						
							| 258 |  | funmpt | ⊢ Fun  ( 𝑘  ∈  𝐷  ↦  ( ( 𝑋 ‘ 𝑘 )  ·  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑘 ,   1  ,   0  ) ) ) ) | 
						
							| 259 |  | fvex | ⊢ ( 0g ‘ 𝑃 )  ∈  V | 
						
							| 260 | 257 258 259 | 3pm3.2i | ⊢ ( ( 𝑘  ∈  𝐷  ↦  ( ( 𝑋 ‘ 𝑘 )  ·  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑘 ,   1  ,   0  ) ) ) )  ∈  V  ∧  Fun  ( 𝑘  ∈  𝐷  ↦  ( ( 𝑋 ‘ 𝑘 )  ·  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑘 ,   1  ,   0  ) ) ) )  ∧  ( 0g ‘ 𝑃 )  ∈  V ) | 
						
							| 261 | 260 | a1i | ⊢ ( 𝜑  →  ( ( 𝑘  ∈  𝐷  ↦  ( ( 𝑋 ‘ 𝑘 )  ·  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑘 ,   1  ,   0  ) ) ) )  ∈  V  ∧  Fun  ( 𝑘  ∈  𝐷  ↦  ( ( 𝑋 ‘ 𝑘 )  ·  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑘 ,   1  ,   0  ) ) ) )  ∧  ( 0g ‘ 𝑃 )  ∈  V ) ) | 
						
							| 262 |  | suppssfifsupp | ⊢ ( ( ( ( 𝑘  ∈  𝐷  ↦  ( ( 𝑋 ‘ 𝑘 )  ·  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑘 ,   1  ,   0  ) ) ) )  ∈  V  ∧  Fun  ( 𝑘  ∈  𝐷  ↦  ( ( 𝑋 ‘ 𝑘 )  ·  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑘 ,   1  ,   0  ) ) ) )  ∧  ( 0g ‘ 𝑃 )  ∈  V )  ∧  ( ( 𝑋  supp   0  )  ∈  Fin  ∧  ( ( 𝑘  ∈  𝐷  ↦  ( ( 𝑋 ‘ 𝑘 )  ·  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑘 ,   1  ,   0  ) ) ) )  supp  ( 0g ‘ 𝑃 ) )  ⊆  ( 𝑋  supp   0  ) ) )  →  ( 𝑘  ∈  𝐷  ↦  ( ( 𝑋 ‘ 𝑘 )  ·  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑘 ,   1  ,   0  ) ) ) )  finSupp  ( 0g ‘ 𝑃 ) ) | 
						
							| 263 | 261 38 256 262 | syl12anc | ⊢ ( 𝜑  →  ( 𝑘  ∈  𝐷  ↦  ( ( 𝑋 ‘ 𝑘 )  ·  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑘 ,   1  ,   0  ) ) ) )  finSupp  ( 0g ‘ 𝑃 ) ) | 
						
							| 264 | 6 44 96 19 243 256 263 | gsumres | ⊢ ( 𝜑  →  ( 𝑃  Σg  ( ( 𝑘  ∈  𝐷  ↦  ( ( 𝑋 ‘ 𝑘 )  ·  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑘 ,   1  ,   0  ) ) ) )  ↾  ( 𝑋  supp   0  ) ) )  =  ( 𝑃  Σg  ( 𝑘  ∈  𝐷  ↦  ( ( 𝑋 ‘ 𝑘 )  ·  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑘 ,   1  ,   0  ) ) ) ) ) ) | 
						
							| 265 | 242 264 | eqtr3d | ⊢ ( 𝜑  →  ( 𝑃  Σg  ( 𝑘  ∈  ( 𝑋  supp   0  )  ↦  ( ( 𝑋 ‘ 𝑘 )  ·  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑘 ,   1  ,   0  ) ) ) ) )  =  ( 𝑃  Σg  ( 𝑘  ∈  𝐷  ↦  ( ( 𝑋 ‘ 𝑘 )  ·  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑘 ,   1  ,   0  ) ) ) ) ) ) | 
						
							| 266 | 240 265 | eqtrd | ⊢ ( 𝜑  →  𝑋  =  ( 𝑃  Σg  ( 𝑘  ∈  𝐷  ↦  ( ( 𝑋 ‘ 𝑘 )  ·  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑘 ,   1  ,   0  ) ) ) ) ) ) |