Step |
Hyp |
Ref |
Expression |
1 |
|
mplcoe1.p |
⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) |
2 |
|
mplcoe1.d |
⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } |
3 |
|
mplcoe1.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
4 |
|
mplcoe1.o |
⊢ 1 = ( 1r ‘ 𝑅 ) |
5 |
|
mplcoe1.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) |
6 |
|
mplcoe2.g |
⊢ 𝐺 = ( mulGrp ‘ 𝑃 ) |
7 |
|
mplcoe2.m |
⊢ ↑ = ( .g ‘ 𝐺 ) |
8 |
|
mplcoe2.v |
⊢ 𝑉 = ( 𝐼 mVar 𝑅 ) |
9 |
|
mplcoe2.r |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
10 |
|
mplcoe2.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐷 ) |
11 |
|
crngring |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) |
12 |
9 11
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
13 |
1
|
mplcrng |
⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝑅 ∈ CRing ) → 𝑃 ∈ CRing ) |
14 |
5 9 13
|
syl2anc |
⊢ ( 𝜑 → 𝑃 ∈ CRing ) |
15 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼 ) ) → 𝑃 ∈ CRing ) |
16 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
17 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼 ) ) → 𝐼 ∈ 𝑊 ) |
18 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼 ) ) → 𝑅 ∈ Ring ) |
19 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼 ) ) → 𝑦 ∈ 𝐼 ) |
20 |
1 8 16 17 18 19
|
mvrcl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼 ) ) → ( 𝑉 ‘ 𝑦 ) ∈ ( Base ‘ 𝑃 ) ) |
21 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼 ) ) → 𝑥 ∈ 𝐼 ) |
22 |
1 8 16 17 18 21
|
mvrcl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼 ) ) → ( 𝑉 ‘ 𝑥 ) ∈ ( Base ‘ 𝑃 ) ) |
23 |
|
eqid |
⊢ ( .r ‘ 𝑃 ) = ( .r ‘ 𝑃 ) |
24 |
6 23
|
mgpplusg |
⊢ ( .r ‘ 𝑃 ) = ( +g ‘ 𝐺 ) |
25 |
24
|
eqcomi |
⊢ ( +g ‘ 𝐺 ) = ( .r ‘ 𝑃 ) |
26 |
16 25
|
crngcom |
⊢ ( ( 𝑃 ∈ CRing ∧ ( 𝑉 ‘ 𝑦 ) ∈ ( Base ‘ 𝑃 ) ∧ ( 𝑉 ‘ 𝑥 ) ∈ ( Base ‘ 𝑃 ) ) → ( ( 𝑉 ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑥 ) ) = ( ( 𝑉 ‘ 𝑥 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑦 ) ) ) |
27 |
15 20 22 26
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼 ) ) → ( ( 𝑉 ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑥 ) ) = ( ( 𝑉 ‘ 𝑥 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑦 ) ) ) |
28 |
27
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐼 ∀ 𝑦 ∈ 𝐼 ( ( 𝑉 ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑥 ) ) = ( ( 𝑉 ‘ 𝑥 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑦 ) ) ) |
29 |
1 2 3 4 5 6 7 8 12 10 28
|
mplcoe5 |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) ) |