| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mplcoe1.p | ⊢ 𝑃  =  ( 𝐼  mPoly  𝑅 ) | 
						
							| 2 |  | mplcoe1.d | ⊢ 𝐷  =  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } | 
						
							| 3 |  | mplcoe1.z | ⊢  0   =  ( 0g ‘ 𝑅 ) | 
						
							| 4 |  | mplcoe1.o | ⊢  1   =  ( 1r ‘ 𝑅 ) | 
						
							| 5 |  | mplcoe1.i | ⊢ ( 𝜑  →  𝐼  ∈  𝑊 ) | 
						
							| 6 |  | mplcoe2.g | ⊢ 𝐺  =  ( mulGrp ‘ 𝑃 ) | 
						
							| 7 |  | mplcoe2.m | ⊢  ↑   =  ( .g ‘ 𝐺 ) | 
						
							| 8 |  | mplcoe2.v | ⊢ 𝑉  =  ( 𝐼  mVar  𝑅 ) | 
						
							| 9 |  | mplcoe2.r | ⊢ ( 𝜑  →  𝑅  ∈  CRing ) | 
						
							| 10 |  | mplcoe2.y | ⊢ ( 𝜑  →  𝑌  ∈  𝐷 ) | 
						
							| 11 |  | crngring | ⊢ ( 𝑅  ∈  CRing  →  𝑅  ∈  Ring ) | 
						
							| 12 | 9 11 | syl | ⊢ ( 𝜑  →  𝑅  ∈  Ring ) | 
						
							| 13 | 1 | mplcrng | ⊢ ( ( 𝐼  ∈  𝑊  ∧  𝑅  ∈  CRing )  →  𝑃  ∈  CRing ) | 
						
							| 14 | 5 9 13 | syl2anc | ⊢ ( 𝜑  →  𝑃  ∈  CRing ) | 
						
							| 15 | 14 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐼  ∧  𝑦  ∈  𝐼 ) )  →  𝑃  ∈  CRing ) | 
						
							| 16 |  | eqid | ⊢ ( Base ‘ 𝑃 )  =  ( Base ‘ 𝑃 ) | 
						
							| 17 | 5 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐼  ∧  𝑦  ∈  𝐼 ) )  →  𝐼  ∈  𝑊 ) | 
						
							| 18 | 12 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐼  ∧  𝑦  ∈  𝐼 ) )  →  𝑅  ∈  Ring ) | 
						
							| 19 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐼  ∧  𝑦  ∈  𝐼 ) )  →  𝑦  ∈  𝐼 ) | 
						
							| 20 | 1 8 16 17 18 19 | mvrcl | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐼  ∧  𝑦  ∈  𝐼 ) )  →  ( 𝑉 ‘ 𝑦 )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 21 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐼  ∧  𝑦  ∈  𝐼 ) )  →  𝑥  ∈  𝐼 ) | 
						
							| 22 | 1 8 16 17 18 21 | mvrcl | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐼  ∧  𝑦  ∈  𝐼 ) )  →  ( 𝑉 ‘ 𝑥 )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 23 |  | eqid | ⊢ ( .r ‘ 𝑃 )  =  ( .r ‘ 𝑃 ) | 
						
							| 24 | 6 23 | mgpplusg | ⊢ ( .r ‘ 𝑃 )  =  ( +g ‘ 𝐺 ) | 
						
							| 25 | 24 | eqcomi | ⊢ ( +g ‘ 𝐺 )  =  ( .r ‘ 𝑃 ) | 
						
							| 26 | 16 25 | crngcom | ⊢ ( ( 𝑃  ∈  CRing  ∧  ( 𝑉 ‘ 𝑦 )  ∈  ( Base ‘ 𝑃 )  ∧  ( 𝑉 ‘ 𝑥 )  ∈  ( Base ‘ 𝑃 ) )  →  ( ( 𝑉 ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑥 ) )  =  ( ( 𝑉 ‘ 𝑥 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑦 ) ) ) | 
						
							| 27 | 15 20 22 26 | syl3anc | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐼  ∧  𝑦  ∈  𝐼 ) )  →  ( ( 𝑉 ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑥 ) )  =  ( ( 𝑉 ‘ 𝑥 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑦 ) ) ) | 
						
							| 28 | 27 | ralrimivva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝐼 ∀ 𝑦  ∈  𝐼 ( ( 𝑉 ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑥 ) )  =  ( ( 𝑉 ‘ 𝑥 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑦 ) ) ) | 
						
							| 29 | 1 2 3 4 5 6 7 8 12 10 28 | mplcoe5 | ⊢ ( 𝜑  →  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑌 ,   1  ,   0  ) )  =  ( 𝐺  Σg  ( 𝑘  ∈  𝐼  ↦  ( ( 𝑌 ‘ 𝑘 )  ↑  ( 𝑉 ‘ 𝑘 ) ) ) ) ) |