Step |
Hyp |
Ref |
Expression |
1 |
|
mplcoe1.p |
⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) |
2 |
|
mplcoe1.d |
⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } |
3 |
|
mplcoe1.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
4 |
|
mplcoe1.o |
⊢ 1 = ( 1r ‘ 𝑅 ) |
5 |
|
mplcoe1.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) |
6 |
|
mplcoe2.g |
⊢ 𝐺 = ( mulGrp ‘ 𝑃 ) |
7 |
|
mplcoe2.m |
⊢ ↑ = ( .g ‘ 𝐺 ) |
8 |
|
mplcoe2.v |
⊢ 𝑉 = ( 𝐼 mVar 𝑅 ) |
9 |
|
mplcoe3.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
10 |
|
mplcoe3.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐼 ) |
11 |
|
mplcoe3.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
12 |
|
ifeq1 |
⊢ ( 𝑥 = 0 → if ( 𝑘 = 𝑋 , 𝑥 , 0 ) = if ( 𝑘 = 𝑋 , 0 , 0 ) ) |
13 |
|
ifid |
⊢ if ( 𝑘 = 𝑋 , 0 , 0 ) = 0 |
14 |
12 13
|
eqtrdi |
⊢ ( 𝑥 = 0 → if ( 𝑘 = 𝑋 , 𝑥 , 0 ) = 0 ) |
15 |
14
|
mpteq2dv |
⊢ ( 𝑥 = 0 → ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 𝑥 , 0 ) ) = ( 𝑘 ∈ 𝐼 ↦ 0 ) ) |
16 |
|
fconstmpt |
⊢ ( 𝐼 × { 0 } ) = ( 𝑘 ∈ 𝐼 ↦ 0 ) |
17 |
15 16
|
eqtr4di |
⊢ ( 𝑥 = 0 → ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 𝑥 , 0 ) ) = ( 𝐼 × { 0 } ) ) |
18 |
17
|
eqeq2d |
⊢ ( 𝑥 = 0 → ( 𝑦 = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 𝑥 , 0 ) ) ↔ 𝑦 = ( 𝐼 × { 0 } ) ) ) |
19 |
18
|
ifbid |
⊢ ( 𝑥 = 0 → if ( 𝑦 = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 𝑥 , 0 ) ) , 1 , 0 ) = if ( 𝑦 = ( 𝐼 × { 0 } ) , 1 , 0 ) ) |
20 |
19
|
mpteq2dv |
⊢ ( 𝑥 = 0 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 𝑥 , 0 ) ) , 1 , 0 ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝐼 × { 0 } ) , 1 , 0 ) ) ) |
21 |
|
oveq1 |
⊢ ( 𝑥 = 0 → ( 𝑥 ↑ ( 𝑉 ‘ 𝑋 ) ) = ( 0 ↑ ( 𝑉 ‘ 𝑋 ) ) ) |
22 |
20 21
|
eqeq12d |
⊢ ( 𝑥 = 0 → ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 𝑥 , 0 ) ) , 1 , 0 ) ) = ( 𝑥 ↑ ( 𝑉 ‘ 𝑋 ) ) ↔ ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝐼 × { 0 } ) , 1 , 0 ) ) = ( 0 ↑ ( 𝑉 ‘ 𝑋 ) ) ) ) |
23 |
22
|
imbi2d |
⊢ ( 𝑥 = 0 → ( ( 𝜑 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 𝑥 , 0 ) ) , 1 , 0 ) ) = ( 𝑥 ↑ ( 𝑉 ‘ 𝑋 ) ) ) ↔ ( 𝜑 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝐼 × { 0 } ) , 1 , 0 ) ) = ( 0 ↑ ( 𝑉 ‘ 𝑋 ) ) ) ) ) |
24 |
|
ifeq1 |
⊢ ( 𝑥 = 𝑛 → if ( 𝑘 = 𝑋 , 𝑥 , 0 ) = if ( 𝑘 = 𝑋 , 𝑛 , 0 ) ) |
25 |
24
|
mpteq2dv |
⊢ ( 𝑥 = 𝑛 → ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 𝑥 , 0 ) ) = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 𝑛 , 0 ) ) ) |
26 |
25
|
eqeq2d |
⊢ ( 𝑥 = 𝑛 → ( 𝑦 = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 𝑥 , 0 ) ) ↔ 𝑦 = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 𝑛 , 0 ) ) ) ) |
27 |
26
|
ifbid |
⊢ ( 𝑥 = 𝑛 → if ( 𝑦 = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 𝑥 , 0 ) ) , 1 , 0 ) = if ( 𝑦 = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 𝑛 , 0 ) ) , 1 , 0 ) ) |
28 |
27
|
mpteq2dv |
⊢ ( 𝑥 = 𝑛 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 𝑥 , 0 ) ) , 1 , 0 ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 𝑛 , 0 ) ) , 1 , 0 ) ) ) |
29 |
|
oveq1 |
⊢ ( 𝑥 = 𝑛 → ( 𝑥 ↑ ( 𝑉 ‘ 𝑋 ) ) = ( 𝑛 ↑ ( 𝑉 ‘ 𝑋 ) ) ) |
30 |
28 29
|
eqeq12d |
⊢ ( 𝑥 = 𝑛 → ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 𝑥 , 0 ) ) , 1 , 0 ) ) = ( 𝑥 ↑ ( 𝑉 ‘ 𝑋 ) ) ↔ ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 𝑛 , 0 ) ) , 1 , 0 ) ) = ( 𝑛 ↑ ( 𝑉 ‘ 𝑋 ) ) ) ) |
31 |
30
|
imbi2d |
⊢ ( 𝑥 = 𝑛 → ( ( 𝜑 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 𝑥 , 0 ) ) , 1 , 0 ) ) = ( 𝑥 ↑ ( 𝑉 ‘ 𝑋 ) ) ) ↔ ( 𝜑 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 𝑛 , 0 ) ) , 1 , 0 ) ) = ( 𝑛 ↑ ( 𝑉 ‘ 𝑋 ) ) ) ) ) |
32 |
|
ifeq1 |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → if ( 𝑘 = 𝑋 , 𝑥 , 0 ) = if ( 𝑘 = 𝑋 , ( 𝑛 + 1 ) , 0 ) ) |
33 |
32
|
mpteq2dv |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 𝑥 , 0 ) ) = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , ( 𝑛 + 1 ) , 0 ) ) ) |
34 |
33
|
eqeq2d |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( 𝑦 = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 𝑥 , 0 ) ) ↔ 𝑦 = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , ( 𝑛 + 1 ) , 0 ) ) ) ) |
35 |
34
|
ifbid |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → if ( 𝑦 = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 𝑥 , 0 ) ) , 1 , 0 ) = if ( 𝑦 = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , ( 𝑛 + 1 ) , 0 ) ) , 1 , 0 ) ) |
36 |
35
|
mpteq2dv |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 𝑥 , 0 ) ) , 1 , 0 ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , ( 𝑛 + 1 ) , 0 ) ) , 1 , 0 ) ) ) |
37 |
|
oveq1 |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( 𝑥 ↑ ( 𝑉 ‘ 𝑋 ) ) = ( ( 𝑛 + 1 ) ↑ ( 𝑉 ‘ 𝑋 ) ) ) |
38 |
36 37
|
eqeq12d |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 𝑥 , 0 ) ) , 1 , 0 ) ) = ( 𝑥 ↑ ( 𝑉 ‘ 𝑋 ) ) ↔ ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , ( 𝑛 + 1 ) , 0 ) ) , 1 , 0 ) ) = ( ( 𝑛 + 1 ) ↑ ( 𝑉 ‘ 𝑋 ) ) ) ) |
39 |
38
|
imbi2d |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( ( 𝜑 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 𝑥 , 0 ) ) , 1 , 0 ) ) = ( 𝑥 ↑ ( 𝑉 ‘ 𝑋 ) ) ) ↔ ( 𝜑 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , ( 𝑛 + 1 ) , 0 ) ) , 1 , 0 ) ) = ( ( 𝑛 + 1 ) ↑ ( 𝑉 ‘ 𝑋 ) ) ) ) ) |
40 |
|
ifeq1 |
⊢ ( 𝑥 = 𝑁 → if ( 𝑘 = 𝑋 , 𝑥 , 0 ) = if ( 𝑘 = 𝑋 , 𝑁 , 0 ) ) |
41 |
40
|
mpteq2dv |
⊢ ( 𝑥 = 𝑁 → ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 𝑥 , 0 ) ) = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 𝑁 , 0 ) ) ) |
42 |
41
|
eqeq2d |
⊢ ( 𝑥 = 𝑁 → ( 𝑦 = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 𝑥 , 0 ) ) ↔ 𝑦 = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 𝑁 , 0 ) ) ) ) |
43 |
42
|
ifbid |
⊢ ( 𝑥 = 𝑁 → if ( 𝑦 = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 𝑥 , 0 ) ) , 1 , 0 ) = if ( 𝑦 = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 𝑁 , 0 ) ) , 1 , 0 ) ) |
44 |
43
|
mpteq2dv |
⊢ ( 𝑥 = 𝑁 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 𝑥 , 0 ) ) , 1 , 0 ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 𝑁 , 0 ) ) , 1 , 0 ) ) ) |
45 |
|
oveq1 |
⊢ ( 𝑥 = 𝑁 → ( 𝑥 ↑ ( 𝑉 ‘ 𝑋 ) ) = ( 𝑁 ↑ ( 𝑉 ‘ 𝑋 ) ) ) |
46 |
44 45
|
eqeq12d |
⊢ ( 𝑥 = 𝑁 → ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 𝑥 , 0 ) ) , 1 , 0 ) ) = ( 𝑥 ↑ ( 𝑉 ‘ 𝑋 ) ) ↔ ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 𝑁 , 0 ) ) , 1 , 0 ) ) = ( 𝑁 ↑ ( 𝑉 ‘ 𝑋 ) ) ) ) |
47 |
46
|
imbi2d |
⊢ ( 𝑥 = 𝑁 → ( ( 𝜑 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 𝑥 , 0 ) ) , 1 , 0 ) ) = ( 𝑥 ↑ ( 𝑉 ‘ 𝑋 ) ) ) ↔ ( 𝜑 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 𝑁 , 0 ) ) , 1 , 0 ) ) = ( 𝑁 ↑ ( 𝑉 ‘ 𝑋 ) ) ) ) ) |
48 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
49 |
1 8 48 5 9 10
|
mvrcl |
⊢ ( 𝜑 → ( 𝑉 ‘ 𝑋 ) ∈ ( Base ‘ 𝑃 ) ) |
50 |
6 48
|
mgpbas |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝐺 ) |
51 |
|
eqid |
⊢ ( 1r ‘ 𝑃 ) = ( 1r ‘ 𝑃 ) |
52 |
6 51
|
ringidval |
⊢ ( 1r ‘ 𝑃 ) = ( 0g ‘ 𝐺 ) |
53 |
50 52 7
|
mulg0 |
⊢ ( ( 𝑉 ‘ 𝑋 ) ∈ ( Base ‘ 𝑃 ) → ( 0 ↑ ( 𝑉 ‘ 𝑋 ) ) = ( 1r ‘ 𝑃 ) ) |
54 |
49 53
|
syl |
⊢ ( 𝜑 → ( 0 ↑ ( 𝑉 ‘ 𝑋 ) ) = ( 1r ‘ 𝑃 ) ) |
55 |
1 2 3 4 51 5 9
|
mpl1 |
⊢ ( 𝜑 → ( 1r ‘ 𝑃 ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝐼 × { 0 } ) , 1 , 0 ) ) ) |
56 |
54 55
|
eqtr2d |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝐼 × { 0 } ) , 1 , 0 ) ) = ( 0 ↑ ( 𝑉 ‘ 𝑋 ) ) ) |
57 |
|
oveq1 |
⊢ ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 𝑛 , 0 ) ) , 1 , 0 ) ) = ( 𝑛 ↑ ( 𝑉 ‘ 𝑋 ) ) → ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 𝑛 , 0 ) ) , 1 , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑉 ‘ 𝑋 ) ) = ( ( 𝑛 ↑ ( 𝑉 ‘ 𝑋 ) ) ( .r ‘ 𝑃 ) ( 𝑉 ‘ 𝑋 ) ) ) |
58 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → 𝐼 ∈ 𝑊 ) |
59 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → 𝑅 ∈ Ring ) |
60 |
2
|
snifpsrbag |
⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝑛 ∈ ℕ0 ) → ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 𝑛 , 0 ) ) ∈ 𝐷 ) |
61 |
5 60
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 𝑛 , 0 ) ) ∈ 𝐷 ) |
62 |
|
eqid |
⊢ ( .r ‘ 𝑃 ) = ( .r ‘ 𝑃 ) |
63 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
64 |
63
|
a1i |
⊢ ( 𝑛 ∈ ℕ0 → 1 ∈ ℕ0 ) |
65 |
2
|
snifpsrbag |
⊢ ( ( 𝐼 ∈ 𝑊 ∧ 1 ∈ ℕ0 ) → ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 1 , 0 ) ) ∈ 𝐷 ) |
66 |
5 64 65
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 1 , 0 ) ) ∈ 𝐷 ) |
67 |
1 48 3 4 2 58 59 61 62 66
|
mplmonmul |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 𝑛 , 0 ) ) , 1 , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 1 , 0 ) ) , 1 , 0 ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 𝑛 , 0 ) ) ∘f + ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 1 , 0 ) ) ) , 1 , 0 ) ) ) |
68 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → 𝑋 ∈ 𝐼 ) |
69 |
8 2 3 4 58 59 68
|
mvrval |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( 𝑉 ‘ 𝑋 ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 1 , 0 ) ) , 1 , 0 ) ) ) |
70 |
69
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 1 , 0 ) ) , 1 , 0 ) ) = ( 𝑉 ‘ 𝑋 ) ) |
71 |
70
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 𝑛 , 0 ) ) , 1 , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 1 , 0 ) ) , 1 , 0 ) ) ) = ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 𝑛 , 0 ) ) , 1 , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑉 ‘ 𝑋 ) ) ) |
72 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑘 ∈ 𝐼 ) → 𝑛 ∈ ℕ0 ) |
73 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
74 |
|
ifcl |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ 0 ∈ ℕ0 ) → if ( 𝑘 = 𝑋 , 𝑛 , 0 ) ∈ ℕ0 ) |
75 |
72 73 74
|
sylancl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑘 ∈ 𝐼 ) → if ( 𝑘 = 𝑋 , 𝑛 , 0 ) ∈ ℕ0 ) |
76 |
63 73
|
ifcli |
⊢ if ( 𝑘 = 𝑋 , 1 , 0 ) ∈ ℕ0 |
77 |
76
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑘 ∈ 𝐼 ) → if ( 𝑘 = 𝑋 , 1 , 0 ) ∈ ℕ0 ) |
78 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 𝑛 , 0 ) ) = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 𝑛 , 0 ) ) ) |
79 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 1 , 0 ) ) = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 1 , 0 ) ) ) |
80 |
58 75 77 78 79
|
offval2 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 𝑛 , 0 ) ) ∘f + ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 1 , 0 ) ) ) = ( 𝑘 ∈ 𝐼 ↦ ( if ( 𝑘 = 𝑋 , 𝑛 , 0 ) + if ( 𝑘 = 𝑋 , 1 , 0 ) ) ) ) |
81 |
|
iftrue |
⊢ ( 𝑘 = 𝑋 → if ( 𝑘 = 𝑋 , 𝑛 , 0 ) = 𝑛 ) |
82 |
|
iftrue |
⊢ ( 𝑘 = 𝑋 → if ( 𝑘 = 𝑋 , 1 , 0 ) = 1 ) |
83 |
81 82
|
oveq12d |
⊢ ( 𝑘 = 𝑋 → ( if ( 𝑘 = 𝑋 , 𝑛 , 0 ) + if ( 𝑘 = 𝑋 , 1 , 0 ) ) = ( 𝑛 + 1 ) ) |
84 |
|
iftrue |
⊢ ( 𝑘 = 𝑋 → if ( 𝑘 = 𝑋 , ( 𝑛 + 1 ) , 0 ) = ( 𝑛 + 1 ) ) |
85 |
83 84
|
eqtr4d |
⊢ ( 𝑘 = 𝑋 → ( if ( 𝑘 = 𝑋 , 𝑛 , 0 ) + if ( 𝑘 = 𝑋 , 1 , 0 ) ) = if ( 𝑘 = 𝑋 , ( 𝑛 + 1 ) , 0 ) ) |
86 |
|
00id |
⊢ ( 0 + 0 ) = 0 |
87 |
|
iffalse |
⊢ ( ¬ 𝑘 = 𝑋 → if ( 𝑘 = 𝑋 , 𝑛 , 0 ) = 0 ) |
88 |
|
iffalse |
⊢ ( ¬ 𝑘 = 𝑋 → if ( 𝑘 = 𝑋 , 1 , 0 ) = 0 ) |
89 |
87 88
|
oveq12d |
⊢ ( ¬ 𝑘 = 𝑋 → ( if ( 𝑘 = 𝑋 , 𝑛 , 0 ) + if ( 𝑘 = 𝑋 , 1 , 0 ) ) = ( 0 + 0 ) ) |
90 |
|
iffalse |
⊢ ( ¬ 𝑘 = 𝑋 → if ( 𝑘 = 𝑋 , ( 𝑛 + 1 ) , 0 ) = 0 ) |
91 |
86 89 90
|
3eqtr4a |
⊢ ( ¬ 𝑘 = 𝑋 → ( if ( 𝑘 = 𝑋 , 𝑛 , 0 ) + if ( 𝑘 = 𝑋 , 1 , 0 ) ) = if ( 𝑘 = 𝑋 , ( 𝑛 + 1 ) , 0 ) ) |
92 |
85 91
|
pm2.61i |
⊢ ( if ( 𝑘 = 𝑋 , 𝑛 , 0 ) + if ( 𝑘 = 𝑋 , 1 , 0 ) ) = if ( 𝑘 = 𝑋 , ( 𝑛 + 1 ) , 0 ) |
93 |
92
|
mpteq2i |
⊢ ( 𝑘 ∈ 𝐼 ↦ ( if ( 𝑘 = 𝑋 , 𝑛 , 0 ) + if ( 𝑘 = 𝑋 , 1 , 0 ) ) ) = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , ( 𝑛 + 1 ) , 0 ) ) |
94 |
80 93
|
eqtrdi |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 𝑛 , 0 ) ) ∘f + ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 1 , 0 ) ) ) = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , ( 𝑛 + 1 ) , 0 ) ) ) |
95 |
94
|
eqeq2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( 𝑦 = ( ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 𝑛 , 0 ) ) ∘f + ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 1 , 0 ) ) ) ↔ 𝑦 = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , ( 𝑛 + 1 ) , 0 ) ) ) ) |
96 |
95
|
ifbid |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → if ( 𝑦 = ( ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 𝑛 , 0 ) ) ∘f + ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 1 , 0 ) ) ) , 1 , 0 ) = if ( 𝑦 = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , ( 𝑛 + 1 ) , 0 ) ) , 1 , 0 ) ) |
97 |
96
|
mpteq2dv |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 𝑛 , 0 ) ) ∘f + ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 1 , 0 ) ) ) , 1 , 0 ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , ( 𝑛 + 1 ) , 0 ) ) , 1 , 0 ) ) ) |
98 |
67 71 97
|
3eqtr3rd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , ( 𝑛 + 1 ) , 0 ) ) , 1 , 0 ) ) = ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 𝑛 , 0 ) ) , 1 , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑉 ‘ 𝑋 ) ) ) |
99 |
1
|
mplring |
⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝑅 ∈ Ring ) → 𝑃 ∈ Ring ) |
100 |
5 9 99
|
syl2anc |
⊢ ( 𝜑 → 𝑃 ∈ Ring ) |
101 |
6
|
ringmgp |
⊢ ( 𝑃 ∈ Ring → 𝐺 ∈ Mnd ) |
102 |
100 101
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ Mnd ) |
103 |
102
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → 𝐺 ∈ Mnd ) |
104 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → 𝑛 ∈ ℕ0 ) |
105 |
49
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( 𝑉 ‘ 𝑋 ) ∈ ( Base ‘ 𝑃 ) ) |
106 |
6 62
|
mgpplusg |
⊢ ( .r ‘ 𝑃 ) = ( +g ‘ 𝐺 ) |
107 |
50 7 106
|
mulgnn0p1 |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑛 ∈ ℕ0 ∧ ( 𝑉 ‘ 𝑋 ) ∈ ( Base ‘ 𝑃 ) ) → ( ( 𝑛 + 1 ) ↑ ( 𝑉 ‘ 𝑋 ) ) = ( ( 𝑛 ↑ ( 𝑉 ‘ 𝑋 ) ) ( .r ‘ 𝑃 ) ( 𝑉 ‘ 𝑋 ) ) ) |
108 |
103 104 105 107
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑛 + 1 ) ↑ ( 𝑉 ‘ 𝑋 ) ) = ( ( 𝑛 ↑ ( 𝑉 ‘ 𝑋 ) ) ( .r ‘ 𝑃 ) ( 𝑉 ‘ 𝑋 ) ) ) |
109 |
98 108
|
eqeq12d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , ( 𝑛 + 1 ) , 0 ) ) , 1 , 0 ) ) = ( ( 𝑛 + 1 ) ↑ ( 𝑉 ‘ 𝑋 ) ) ↔ ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 𝑛 , 0 ) ) , 1 , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑉 ‘ 𝑋 ) ) = ( ( 𝑛 ↑ ( 𝑉 ‘ 𝑋 ) ) ( .r ‘ 𝑃 ) ( 𝑉 ‘ 𝑋 ) ) ) ) |
110 |
57 109
|
syl5ibr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 𝑛 , 0 ) ) , 1 , 0 ) ) = ( 𝑛 ↑ ( 𝑉 ‘ 𝑋 ) ) → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , ( 𝑛 + 1 ) , 0 ) ) , 1 , 0 ) ) = ( ( 𝑛 + 1 ) ↑ ( 𝑉 ‘ 𝑋 ) ) ) ) |
111 |
110
|
expcom |
⊢ ( 𝑛 ∈ ℕ0 → ( 𝜑 → ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 𝑛 , 0 ) ) , 1 , 0 ) ) = ( 𝑛 ↑ ( 𝑉 ‘ 𝑋 ) ) → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , ( 𝑛 + 1 ) , 0 ) ) , 1 , 0 ) ) = ( ( 𝑛 + 1 ) ↑ ( 𝑉 ‘ 𝑋 ) ) ) ) ) |
112 |
111
|
a2d |
⊢ ( 𝑛 ∈ ℕ0 → ( ( 𝜑 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 𝑛 , 0 ) ) , 1 , 0 ) ) = ( 𝑛 ↑ ( 𝑉 ‘ 𝑋 ) ) ) → ( 𝜑 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , ( 𝑛 + 1 ) , 0 ) ) , 1 , 0 ) ) = ( ( 𝑛 + 1 ) ↑ ( 𝑉 ‘ 𝑋 ) ) ) ) ) |
113 |
23 31 39 47 56 112
|
nn0ind |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝜑 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 𝑁 , 0 ) ) , 1 , 0 ) ) = ( 𝑁 ↑ ( 𝑉 ‘ 𝑋 ) ) ) ) |
114 |
11 113
|
mpcom |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 𝑁 , 0 ) ) , 1 , 0 ) ) = ( 𝑁 ↑ ( 𝑉 ‘ 𝑋 ) ) ) |