Metamath Proof Explorer


Theorem mplcoe4

Description: Decompose a polynomial into a finite sum of scaled monomials. (Contributed by Stefan O'Rear, 8-Mar-2015)

Ref Expression
Hypotheses mplcoe4.p 𝑃 = ( 𝐼 mPoly 𝑅 )
mplcoe4.d 𝐷 = { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin }
mplcoe4.z 0 = ( 0g𝑅 )
mplcoe4.b 𝐵 = ( Base ‘ 𝑃 )
mplcoe4.i ( 𝜑𝐼𝑊 )
mplcoe4.r ( 𝜑𝑅 ∈ Ring )
mplcoe4.x ( 𝜑𝑋𝐵 )
Assertion mplcoe4 ( 𝜑𝑋 = ( 𝑃 Σg ( 𝑘𝐷 ↦ ( 𝑦𝐷 ↦ if ( 𝑦 = 𝑘 , ( 𝑋𝑘 ) , 0 ) ) ) ) )

Proof

Step Hyp Ref Expression
1 mplcoe4.p 𝑃 = ( 𝐼 mPoly 𝑅 )
2 mplcoe4.d 𝐷 = { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin }
3 mplcoe4.z 0 = ( 0g𝑅 )
4 mplcoe4.b 𝐵 = ( Base ‘ 𝑃 )
5 mplcoe4.i ( 𝜑𝐼𝑊 )
6 mplcoe4.r ( 𝜑𝑅 ∈ Ring )
7 mplcoe4.x ( 𝜑𝑋𝐵 )
8 eqid ( 1r𝑅 ) = ( 1r𝑅 )
9 eqid ( ·𝑠𝑃 ) = ( ·𝑠𝑃 )
10 1 2 3 8 5 4 9 6 7 mplcoe1 ( 𝜑𝑋 = ( 𝑃 Σg ( 𝑘𝐷 ↦ ( ( 𝑋𝑘 ) ( ·𝑠𝑃 ) ( 𝑦𝐷 ↦ if ( 𝑦 = 𝑘 , ( 1r𝑅 ) , 0 ) ) ) ) ) )
11 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
12 5 adantr ( ( 𝜑𝑘𝐷 ) → 𝐼𝑊 )
13 6 adantr ( ( 𝜑𝑘𝐷 ) → 𝑅 ∈ Ring )
14 simpr ( ( 𝜑𝑘𝐷 ) → 𝑘𝐷 )
15 1 11 4 2 7 mplelf ( 𝜑𝑋 : 𝐷 ⟶ ( Base ‘ 𝑅 ) )
16 15 ffvelrnda ( ( 𝜑𝑘𝐷 ) → ( 𝑋𝑘 ) ∈ ( Base ‘ 𝑅 ) )
17 1 9 2 8 3 11 12 13 14 16 mplmon2 ( ( 𝜑𝑘𝐷 ) → ( ( 𝑋𝑘 ) ( ·𝑠𝑃 ) ( 𝑦𝐷 ↦ if ( 𝑦 = 𝑘 , ( 1r𝑅 ) , 0 ) ) ) = ( 𝑦𝐷 ↦ if ( 𝑦 = 𝑘 , ( 𝑋𝑘 ) , 0 ) ) )
18 17 mpteq2dva ( 𝜑 → ( 𝑘𝐷 ↦ ( ( 𝑋𝑘 ) ( ·𝑠𝑃 ) ( 𝑦𝐷 ↦ if ( 𝑦 = 𝑘 , ( 1r𝑅 ) , 0 ) ) ) ) = ( 𝑘𝐷 ↦ ( 𝑦𝐷 ↦ if ( 𝑦 = 𝑘 , ( 𝑋𝑘 ) , 0 ) ) ) )
19 18 oveq2d ( 𝜑 → ( 𝑃 Σg ( 𝑘𝐷 ↦ ( ( 𝑋𝑘 ) ( ·𝑠𝑃 ) ( 𝑦𝐷 ↦ if ( 𝑦 = 𝑘 , ( 1r𝑅 ) , 0 ) ) ) ) ) = ( 𝑃 Σg ( 𝑘𝐷 ↦ ( 𝑦𝐷 ↦ if ( 𝑦 = 𝑘 , ( 𝑋𝑘 ) , 0 ) ) ) ) )
20 10 19 eqtrd ( 𝜑𝑋 = ( 𝑃 Σg ( 𝑘𝐷 ↦ ( 𝑦𝐷 ↦ if ( 𝑦 = 𝑘 , ( 𝑋𝑘 ) , 0 ) ) ) ) )