Step |
Hyp |
Ref |
Expression |
1 |
|
mplcoe4.p |
⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) |
2 |
|
mplcoe4.d |
⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } |
3 |
|
mplcoe4.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
4 |
|
mplcoe4.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
5 |
|
mplcoe4.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) |
6 |
|
mplcoe4.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
7 |
|
mplcoe4.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
8 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
9 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑃 ) = ( ·𝑠 ‘ 𝑃 ) |
10 |
1 2 3 8 5 4 9 6 7
|
mplcoe1 |
⊢ ( 𝜑 → 𝑋 = ( 𝑃 Σg ( 𝑘 ∈ 𝐷 ↦ ( ( 𝑋 ‘ 𝑘 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , ( 1r ‘ 𝑅 ) , 0 ) ) ) ) ) ) |
11 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
12 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → 𝐼 ∈ 𝑊 ) |
13 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → 𝑅 ∈ Ring ) |
14 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → 𝑘 ∈ 𝐷 ) |
15 |
1 11 4 2 7
|
mplelf |
⊢ ( 𝜑 → 𝑋 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
16 |
15
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → ( 𝑋 ‘ 𝑘 ) ∈ ( Base ‘ 𝑅 ) ) |
17 |
1 9 2 8 3 11 12 13 14 16
|
mplmon2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → ( ( 𝑋 ‘ 𝑘 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , ( 1r ‘ 𝑅 ) , 0 ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , ( 𝑋 ‘ 𝑘 ) , 0 ) ) ) |
18 |
17
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐷 ↦ ( ( 𝑋 ‘ 𝑘 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , ( 1r ‘ 𝑅 ) , 0 ) ) ) ) = ( 𝑘 ∈ 𝐷 ↦ ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , ( 𝑋 ‘ 𝑘 ) , 0 ) ) ) ) |
19 |
18
|
oveq2d |
⊢ ( 𝜑 → ( 𝑃 Σg ( 𝑘 ∈ 𝐷 ↦ ( ( 𝑋 ‘ 𝑘 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , ( 1r ‘ 𝑅 ) , 0 ) ) ) ) ) = ( 𝑃 Σg ( 𝑘 ∈ 𝐷 ↦ ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , ( 𝑋 ‘ 𝑘 ) , 0 ) ) ) ) ) |
20 |
10 19
|
eqtrd |
⊢ ( 𝜑 → 𝑋 = ( 𝑃 Σg ( 𝑘 ∈ 𝐷 ↦ ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , ( 𝑋 ‘ 𝑘 ) , 0 ) ) ) ) ) |