| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mplcoe4.p | ⊢ 𝑃  =  ( 𝐼  mPoly  𝑅 ) | 
						
							| 2 |  | mplcoe4.d | ⊢ 𝐷  =  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } | 
						
							| 3 |  | mplcoe4.z | ⊢  0   =  ( 0g ‘ 𝑅 ) | 
						
							| 4 |  | mplcoe4.b | ⊢ 𝐵  =  ( Base ‘ 𝑃 ) | 
						
							| 5 |  | mplcoe4.i | ⊢ ( 𝜑  →  𝐼  ∈  𝑊 ) | 
						
							| 6 |  | mplcoe4.r | ⊢ ( 𝜑  →  𝑅  ∈  Ring ) | 
						
							| 7 |  | mplcoe4.x | ⊢ ( 𝜑  →  𝑋  ∈  𝐵 ) | 
						
							| 8 |  | eqid | ⊢ ( 1r ‘ 𝑅 )  =  ( 1r ‘ 𝑅 ) | 
						
							| 9 |  | eqid | ⊢ (  ·𝑠  ‘ 𝑃 )  =  (  ·𝑠  ‘ 𝑃 ) | 
						
							| 10 | 1 2 3 8 5 4 9 6 7 | mplcoe1 | ⊢ ( 𝜑  →  𝑋  =  ( 𝑃  Σg  ( 𝑘  ∈  𝐷  ↦  ( ( 𝑋 ‘ 𝑘 ) (  ·𝑠  ‘ 𝑃 ) ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑘 ,  ( 1r ‘ 𝑅 ) ,   0  ) ) ) ) ) ) | 
						
							| 11 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 12 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐷 )  →  𝐼  ∈  𝑊 ) | 
						
							| 13 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐷 )  →  𝑅  ∈  Ring ) | 
						
							| 14 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐷 )  →  𝑘  ∈  𝐷 ) | 
						
							| 15 | 1 11 4 2 7 | mplelf | ⊢ ( 𝜑  →  𝑋 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 16 | 15 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐷 )  →  ( 𝑋 ‘ 𝑘 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 17 | 1 9 2 8 3 11 12 13 14 16 | mplmon2 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐷 )  →  ( ( 𝑋 ‘ 𝑘 ) (  ·𝑠  ‘ 𝑃 ) ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑘 ,  ( 1r ‘ 𝑅 ) ,   0  ) ) )  =  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑘 ,  ( 𝑋 ‘ 𝑘 ) ,   0  ) ) ) | 
						
							| 18 | 17 | mpteq2dva | ⊢ ( 𝜑  →  ( 𝑘  ∈  𝐷  ↦  ( ( 𝑋 ‘ 𝑘 ) (  ·𝑠  ‘ 𝑃 ) ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑘 ,  ( 1r ‘ 𝑅 ) ,   0  ) ) ) )  =  ( 𝑘  ∈  𝐷  ↦  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑘 ,  ( 𝑋 ‘ 𝑘 ) ,   0  ) ) ) ) | 
						
							| 19 | 18 | oveq2d | ⊢ ( 𝜑  →  ( 𝑃  Σg  ( 𝑘  ∈  𝐷  ↦  ( ( 𝑋 ‘ 𝑘 ) (  ·𝑠  ‘ 𝑃 ) ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑘 ,  ( 1r ‘ 𝑅 ) ,   0  ) ) ) ) )  =  ( 𝑃  Σg  ( 𝑘  ∈  𝐷  ↦  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑘 ,  ( 𝑋 ‘ 𝑘 ) ,   0  ) ) ) ) ) | 
						
							| 20 | 10 19 | eqtrd | ⊢ ( 𝜑  →  𝑋  =  ( 𝑃  Σg  ( 𝑘  ∈  𝐷  ↦  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑘 ,  ( 𝑋 ‘ 𝑘 ) ,   0  ) ) ) ) ) |