Step |
Hyp |
Ref |
Expression |
1 |
|
mplcoe1.p |
⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) |
2 |
|
mplcoe1.d |
⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } |
3 |
|
mplcoe1.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
4 |
|
mplcoe1.o |
⊢ 1 = ( 1r ‘ 𝑅 ) |
5 |
|
mplcoe1.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) |
6 |
|
mplcoe2.g |
⊢ 𝐺 = ( mulGrp ‘ 𝑃 ) |
7 |
|
mplcoe2.m |
⊢ ↑ = ( .g ‘ 𝐺 ) |
8 |
|
mplcoe2.v |
⊢ 𝑉 = ( 𝐼 mVar 𝑅 ) |
9 |
|
mplcoe5.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
10 |
|
mplcoe5.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐷 ) |
11 |
|
mplcoe5.c |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐼 ∀ 𝑦 ∈ 𝐼 ( ( 𝑉 ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑥 ) ) = ( ( 𝑉 ‘ 𝑥 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑦 ) ) ) |
12 |
2
|
psrbag |
⊢ ( 𝐼 ∈ 𝑊 → ( 𝑌 ∈ 𝐷 ↔ ( 𝑌 : 𝐼 ⟶ ℕ0 ∧ ( ◡ 𝑌 “ ℕ ) ∈ Fin ) ) ) |
13 |
5 12
|
syl |
⊢ ( 𝜑 → ( 𝑌 ∈ 𝐷 ↔ ( 𝑌 : 𝐼 ⟶ ℕ0 ∧ ( ◡ 𝑌 “ ℕ ) ∈ Fin ) ) ) |
14 |
10 13
|
mpbid |
⊢ ( 𝜑 → ( 𝑌 : 𝐼 ⟶ ℕ0 ∧ ( ◡ 𝑌 “ ℕ ) ∈ Fin ) ) |
15 |
14
|
simpld |
⊢ ( 𝜑 → 𝑌 : 𝐼 ⟶ ℕ0 ) |
16 |
15
|
feqmptd |
⊢ ( 𝜑 → 𝑌 = ( 𝑖 ∈ 𝐼 ↦ ( 𝑌 ‘ 𝑖 ) ) ) |
17 |
|
iftrue |
⊢ ( 𝑖 ∈ ( ◡ 𝑌 “ ℕ ) → if ( 𝑖 ∈ ( ◡ 𝑌 “ ℕ ) , ( 𝑌 ‘ 𝑖 ) , 0 ) = ( 𝑌 ‘ 𝑖 ) ) |
18 |
17
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑖 ∈ ( ◡ 𝑌 “ ℕ ) ) → if ( 𝑖 ∈ ( ◡ 𝑌 “ ℕ ) , ( 𝑌 ‘ 𝑖 ) , 0 ) = ( 𝑌 ‘ 𝑖 ) ) |
19 |
|
eldif |
⊢ ( 𝑖 ∈ ( 𝐼 ∖ ( ◡ 𝑌 “ ℕ ) ) ↔ ( 𝑖 ∈ 𝐼 ∧ ¬ 𝑖 ∈ ( ◡ 𝑌 “ ℕ ) ) ) |
20 |
|
frnnn0supp |
⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝑌 : 𝐼 ⟶ ℕ0 ) → ( 𝑌 supp 0 ) = ( ◡ 𝑌 “ ℕ ) ) |
21 |
5 15 20
|
syl2anc |
⊢ ( 𝜑 → ( 𝑌 supp 0 ) = ( ◡ 𝑌 “ ℕ ) ) |
22 |
|
eqimss |
⊢ ( ( 𝑌 supp 0 ) = ( ◡ 𝑌 “ ℕ ) → ( 𝑌 supp 0 ) ⊆ ( ◡ 𝑌 “ ℕ ) ) |
23 |
21 22
|
syl |
⊢ ( 𝜑 → ( 𝑌 supp 0 ) ⊆ ( ◡ 𝑌 “ ℕ ) ) |
24 |
|
c0ex |
⊢ 0 ∈ V |
25 |
24
|
a1i |
⊢ ( 𝜑 → 0 ∈ V ) |
26 |
15 23 5 25
|
suppssr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝐼 ∖ ( ◡ 𝑌 “ ℕ ) ) ) → ( 𝑌 ‘ 𝑖 ) = 0 ) |
27 |
26
|
ifeq2d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝐼 ∖ ( ◡ 𝑌 “ ℕ ) ) ) → if ( 𝑖 ∈ ( ◡ 𝑌 “ ℕ ) , ( 𝑌 ‘ 𝑖 ) , ( 𝑌 ‘ 𝑖 ) ) = if ( 𝑖 ∈ ( ◡ 𝑌 “ ℕ ) , ( 𝑌 ‘ 𝑖 ) , 0 ) ) |
28 |
|
ifid |
⊢ if ( 𝑖 ∈ ( ◡ 𝑌 “ ℕ ) , ( 𝑌 ‘ 𝑖 ) , ( 𝑌 ‘ 𝑖 ) ) = ( 𝑌 ‘ 𝑖 ) |
29 |
27 28
|
eqtr3di |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝐼 ∖ ( ◡ 𝑌 “ ℕ ) ) ) → if ( 𝑖 ∈ ( ◡ 𝑌 “ ℕ ) , ( 𝑌 ‘ 𝑖 ) , 0 ) = ( 𝑌 ‘ 𝑖 ) ) |
30 |
19 29
|
sylan2br |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝐼 ∧ ¬ 𝑖 ∈ ( ◡ 𝑌 “ ℕ ) ) ) → if ( 𝑖 ∈ ( ◡ 𝑌 “ ℕ ) , ( 𝑌 ‘ 𝑖 ) , 0 ) = ( 𝑌 ‘ 𝑖 ) ) |
31 |
30
|
anassrs |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) ∧ ¬ 𝑖 ∈ ( ◡ 𝑌 “ ℕ ) ) → if ( 𝑖 ∈ ( ◡ 𝑌 “ ℕ ) , ( 𝑌 ‘ 𝑖 ) , 0 ) = ( 𝑌 ‘ 𝑖 ) ) |
32 |
18 31
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) → if ( 𝑖 ∈ ( ◡ 𝑌 “ ℕ ) , ( 𝑌 ‘ 𝑖 ) , 0 ) = ( 𝑌 ‘ 𝑖 ) ) |
33 |
32
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ ( ◡ 𝑌 “ ℕ ) , ( 𝑌 ‘ 𝑖 ) , 0 ) ) = ( 𝑖 ∈ 𝐼 ↦ ( 𝑌 ‘ 𝑖 ) ) ) |
34 |
16 33
|
eqtr4d |
⊢ ( 𝜑 → 𝑌 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ ( ◡ 𝑌 “ ℕ ) , ( 𝑌 ‘ 𝑖 ) , 0 ) ) ) |
35 |
34
|
eqeq2d |
⊢ ( 𝜑 → ( 𝑦 = 𝑌 ↔ 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ ( ◡ 𝑌 “ ℕ ) , ( 𝑌 ‘ 𝑖 ) , 0 ) ) ) ) |
36 |
35
|
ifbid |
⊢ ( 𝜑 → if ( 𝑦 = 𝑌 , 1 , 0 ) = if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ ( ◡ 𝑌 “ ℕ ) , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) ) |
37 |
36
|
mpteq2dv |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ ( ◡ 𝑌 “ ℕ ) , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) ) ) |
38 |
|
cnvimass |
⊢ ( ◡ 𝑌 “ ℕ ) ⊆ dom 𝑌 |
39 |
38 15
|
fssdm |
⊢ ( 𝜑 → ( ◡ 𝑌 “ ℕ ) ⊆ 𝐼 ) |
40 |
14
|
simprd |
⊢ ( 𝜑 → ( ◡ 𝑌 “ ℕ ) ∈ Fin ) |
41 |
|
sseq1 |
⊢ ( 𝑤 = ∅ → ( 𝑤 ⊆ 𝐼 ↔ ∅ ⊆ 𝐼 ) ) |
42 |
|
noel |
⊢ ¬ 𝑖 ∈ ∅ |
43 |
|
eleq2 |
⊢ ( 𝑤 = ∅ → ( 𝑖 ∈ 𝑤 ↔ 𝑖 ∈ ∅ ) ) |
44 |
42 43
|
mtbiri |
⊢ ( 𝑤 = ∅ → ¬ 𝑖 ∈ 𝑤 ) |
45 |
44
|
iffalsed |
⊢ ( 𝑤 = ∅ → if ( 𝑖 ∈ 𝑤 , ( 𝑌 ‘ 𝑖 ) , 0 ) = 0 ) |
46 |
45
|
mpteq2dv |
⊢ ( 𝑤 = ∅ → ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑤 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) = ( 𝑖 ∈ 𝐼 ↦ 0 ) ) |
47 |
|
fconstmpt |
⊢ ( 𝐼 × { 0 } ) = ( 𝑖 ∈ 𝐼 ↦ 0 ) |
48 |
46 47
|
eqtr4di |
⊢ ( 𝑤 = ∅ → ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑤 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) = ( 𝐼 × { 0 } ) ) |
49 |
48
|
eqeq2d |
⊢ ( 𝑤 = ∅ → ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑤 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) ↔ 𝑦 = ( 𝐼 × { 0 } ) ) ) |
50 |
49
|
ifbid |
⊢ ( 𝑤 = ∅ → if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑤 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) = if ( 𝑦 = ( 𝐼 × { 0 } ) , 1 , 0 ) ) |
51 |
50
|
mpteq2dv |
⊢ ( 𝑤 = ∅ → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑤 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝐼 × { 0 } ) , 1 , 0 ) ) ) |
52 |
|
mpteq1 |
⊢ ( 𝑤 = ∅ → ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) = ( 𝑘 ∈ ∅ ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) |
53 |
|
mpt0 |
⊢ ( 𝑘 ∈ ∅ ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) = ∅ |
54 |
52 53
|
eqtrdi |
⊢ ( 𝑤 = ∅ → ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) = ∅ ) |
55 |
54
|
oveq2d |
⊢ ( 𝑤 = ∅ → ( 𝐺 Σg ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) = ( 𝐺 Σg ∅ ) ) |
56 |
|
eqid |
⊢ ( 1r ‘ 𝑃 ) = ( 1r ‘ 𝑃 ) |
57 |
6 56
|
ringidval |
⊢ ( 1r ‘ 𝑃 ) = ( 0g ‘ 𝐺 ) |
58 |
57
|
gsum0 |
⊢ ( 𝐺 Σg ∅ ) = ( 1r ‘ 𝑃 ) |
59 |
55 58
|
eqtrdi |
⊢ ( 𝑤 = ∅ → ( 𝐺 Σg ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) = ( 1r ‘ 𝑃 ) ) |
60 |
51 59
|
eqeq12d |
⊢ ( 𝑤 = ∅ → ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑤 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) ↔ ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝐼 × { 0 } ) , 1 , 0 ) ) = ( 1r ‘ 𝑃 ) ) ) |
61 |
41 60
|
imbi12d |
⊢ ( 𝑤 = ∅ → ( ( 𝑤 ⊆ 𝐼 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑤 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) ) ↔ ( ∅ ⊆ 𝐼 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝐼 × { 0 } ) , 1 , 0 ) ) = ( 1r ‘ 𝑃 ) ) ) ) |
62 |
61
|
imbi2d |
⊢ ( 𝑤 = ∅ → ( ( 𝜑 → ( 𝑤 ⊆ 𝐼 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑤 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) ) ) ↔ ( 𝜑 → ( ∅ ⊆ 𝐼 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝐼 × { 0 } ) , 1 , 0 ) ) = ( 1r ‘ 𝑃 ) ) ) ) ) |
63 |
|
sseq1 |
⊢ ( 𝑤 = 𝑥 → ( 𝑤 ⊆ 𝐼 ↔ 𝑥 ⊆ 𝐼 ) ) |
64 |
|
eleq2 |
⊢ ( 𝑤 = 𝑥 → ( 𝑖 ∈ 𝑤 ↔ 𝑖 ∈ 𝑥 ) ) |
65 |
64
|
ifbid |
⊢ ( 𝑤 = 𝑥 → if ( 𝑖 ∈ 𝑤 , ( 𝑌 ‘ 𝑖 ) , 0 ) = if ( 𝑖 ∈ 𝑥 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) |
66 |
65
|
mpteq2dv |
⊢ ( 𝑤 = 𝑥 → ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑤 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑥 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) ) |
67 |
66
|
eqeq2d |
⊢ ( 𝑤 = 𝑥 → ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑤 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) ↔ 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑥 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) ) ) |
68 |
67
|
ifbid |
⊢ ( 𝑤 = 𝑥 → if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑤 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) = if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑥 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) ) |
69 |
68
|
mpteq2dv |
⊢ ( 𝑤 = 𝑥 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑤 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑥 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) ) ) |
70 |
|
mpteq1 |
⊢ ( 𝑤 = 𝑥 → ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) = ( 𝑘 ∈ 𝑥 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) |
71 |
70
|
oveq2d |
⊢ ( 𝑤 = 𝑥 → ( 𝐺 Σg ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) = ( 𝐺 Σg ( 𝑘 ∈ 𝑥 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) ) |
72 |
69 71
|
eqeq12d |
⊢ ( 𝑤 = 𝑥 → ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑤 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) ↔ ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑥 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘 ∈ 𝑥 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) ) ) |
73 |
63 72
|
imbi12d |
⊢ ( 𝑤 = 𝑥 → ( ( 𝑤 ⊆ 𝐼 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑤 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) ) ↔ ( 𝑥 ⊆ 𝐼 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑥 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘 ∈ 𝑥 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) ) ) ) |
74 |
73
|
imbi2d |
⊢ ( 𝑤 = 𝑥 → ( ( 𝜑 → ( 𝑤 ⊆ 𝐼 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑤 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) ) ) ↔ ( 𝜑 → ( 𝑥 ⊆ 𝐼 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑥 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘 ∈ 𝑥 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) ) ) ) ) |
75 |
|
sseq1 |
⊢ ( 𝑤 = ( 𝑥 ∪ { 𝑧 } ) → ( 𝑤 ⊆ 𝐼 ↔ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) |
76 |
|
eleq2 |
⊢ ( 𝑤 = ( 𝑥 ∪ { 𝑧 } ) → ( 𝑖 ∈ 𝑤 ↔ 𝑖 ∈ ( 𝑥 ∪ { 𝑧 } ) ) ) |
77 |
76
|
ifbid |
⊢ ( 𝑤 = ( 𝑥 ∪ { 𝑧 } ) → if ( 𝑖 ∈ 𝑤 , ( 𝑌 ‘ 𝑖 ) , 0 ) = if ( 𝑖 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑌 ‘ 𝑖 ) , 0 ) ) |
78 |
77
|
mpteq2dv |
⊢ ( 𝑤 = ( 𝑥 ∪ { 𝑧 } ) → ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑤 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑌 ‘ 𝑖 ) , 0 ) ) ) |
79 |
78
|
eqeq2d |
⊢ ( 𝑤 = ( 𝑥 ∪ { 𝑧 } ) → ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑤 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) ↔ 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑌 ‘ 𝑖 ) , 0 ) ) ) ) |
80 |
79
|
ifbid |
⊢ ( 𝑤 = ( 𝑥 ∪ { 𝑧 } ) → if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑤 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) = if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) ) |
81 |
80
|
mpteq2dv |
⊢ ( 𝑤 = ( 𝑥 ∪ { 𝑧 } ) → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑤 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) ) ) |
82 |
|
mpteq1 |
⊢ ( 𝑤 = ( 𝑥 ∪ { 𝑧 } ) → ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) = ( 𝑘 ∈ ( 𝑥 ∪ { 𝑧 } ) ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) |
83 |
82
|
oveq2d |
⊢ ( 𝑤 = ( 𝑥 ∪ { 𝑧 } ) → ( 𝐺 Σg ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) = ( 𝐺 Σg ( 𝑘 ∈ ( 𝑥 ∪ { 𝑧 } ) ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) ) |
84 |
81 83
|
eqeq12d |
⊢ ( 𝑤 = ( 𝑥 ∪ { 𝑧 } ) → ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑤 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) ↔ ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘 ∈ ( 𝑥 ∪ { 𝑧 } ) ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) ) ) |
85 |
75 84
|
imbi12d |
⊢ ( 𝑤 = ( 𝑥 ∪ { 𝑧 } ) → ( ( 𝑤 ⊆ 𝐼 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑤 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) ) ↔ ( ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘 ∈ ( 𝑥 ∪ { 𝑧 } ) ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) ) ) ) |
86 |
85
|
imbi2d |
⊢ ( 𝑤 = ( 𝑥 ∪ { 𝑧 } ) → ( ( 𝜑 → ( 𝑤 ⊆ 𝐼 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑤 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) ) ) ↔ ( 𝜑 → ( ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘 ∈ ( 𝑥 ∪ { 𝑧 } ) ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) ) ) ) ) |
87 |
|
sseq1 |
⊢ ( 𝑤 = ( ◡ 𝑌 “ ℕ ) → ( 𝑤 ⊆ 𝐼 ↔ ( ◡ 𝑌 “ ℕ ) ⊆ 𝐼 ) ) |
88 |
|
eleq2 |
⊢ ( 𝑤 = ( ◡ 𝑌 “ ℕ ) → ( 𝑖 ∈ 𝑤 ↔ 𝑖 ∈ ( ◡ 𝑌 “ ℕ ) ) ) |
89 |
88
|
ifbid |
⊢ ( 𝑤 = ( ◡ 𝑌 “ ℕ ) → if ( 𝑖 ∈ 𝑤 , ( 𝑌 ‘ 𝑖 ) , 0 ) = if ( 𝑖 ∈ ( ◡ 𝑌 “ ℕ ) , ( 𝑌 ‘ 𝑖 ) , 0 ) ) |
90 |
89
|
mpteq2dv |
⊢ ( 𝑤 = ( ◡ 𝑌 “ ℕ ) → ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑤 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ ( ◡ 𝑌 “ ℕ ) , ( 𝑌 ‘ 𝑖 ) , 0 ) ) ) |
91 |
90
|
eqeq2d |
⊢ ( 𝑤 = ( ◡ 𝑌 “ ℕ ) → ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑤 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) ↔ 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ ( ◡ 𝑌 “ ℕ ) , ( 𝑌 ‘ 𝑖 ) , 0 ) ) ) ) |
92 |
91
|
ifbid |
⊢ ( 𝑤 = ( ◡ 𝑌 “ ℕ ) → if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑤 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) = if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ ( ◡ 𝑌 “ ℕ ) , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) ) |
93 |
92
|
mpteq2dv |
⊢ ( 𝑤 = ( ◡ 𝑌 “ ℕ ) → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑤 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ ( ◡ 𝑌 “ ℕ ) , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) ) ) |
94 |
|
mpteq1 |
⊢ ( 𝑤 = ( ◡ 𝑌 “ ℕ ) → ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) = ( 𝑘 ∈ ( ◡ 𝑌 “ ℕ ) ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) |
95 |
94
|
oveq2d |
⊢ ( 𝑤 = ( ◡ 𝑌 “ ℕ ) → ( 𝐺 Σg ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) = ( 𝐺 Σg ( 𝑘 ∈ ( ◡ 𝑌 “ ℕ ) ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) ) |
96 |
93 95
|
eqeq12d |
⊢ ( 𝑤 = ( ◡ 𝑌 “ ℕ ) → ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑤 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) ↔ ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ ( ◡ 𝑌 “ ℕ ) , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘 ∈ ( ◡ 𝑌 “ ℕ ) ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) ) ) |
97 |
87 96
|
imbi12d |
⊢ ( 𝑤 = ( ◡ 𝑌 “ ℕ ) → ( ( 𝑤 ⊆ 𝐼 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑤 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) ) ↔ ( ( ◡ 𝑌 “ ℕ ) ⊆ 𝐼 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ ( ◡ 𝑌 “ ℕ ) , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘 ∈ ( ◡ 𝑌 “ ℕ ) ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) ) ) ) |
98 |
97
|
imbi2d |
⊢ ( 𝑤 = ( ◡ 𝑌 “ ℕ ) → ( ( 𝜑 → ( 𝑤 ⊆ 𝐼 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑤 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) ) ) ↔ ( 𝜑 → ( ( ◡ 𝑌 “ ℕ ) ⊆ 𝐼 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ ( ◡ 𝑌 “ ℕ ) , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘 ∈ ( ◡ 𝑌 “ ℕ ) ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) ) ) ) ) |
99 |
1 2 3 4 56 5 9
|
mpl1 |
⊢ ( 𝜑 → ( 1r ‘ 𝑃 ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝐼 × { 0 } ) , 1 , 0 ) ) ) |
100 |
99 56
|
eqtr3di |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝐼 × { 0 } ) , 1 , 0 ) ) = ( 1r ‘ 𝑃 ) ) |
101 |
100
|
a1d |
⊢ ( 𝜑 → ( ∅ ⊆ 𝐼 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝐼 × { 0 } ) , 1 , 0 ) ) = ( 1r ‘ 𝑃 ) ) ) |
102 |
|
ssun1 |
⊢ 𝑥 ⊆ ( 𝑥 ∪ { 𝑧 } ) |
103 |
|
sstr2 |
⊢ ( 𝑥 ⊆ ( 𝑥 ∪ { 𝑧 } ) → ( ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 → 𝑥 ⊆ 𝐼 ) ) |
104 |
102 103
|
ax-mp |
⊢ ( ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 → 𝑥 ⊆ 𝐼 ) |
105 |
104
|
imim1i |
⊢ ( ( 𝑥 ⊆ 𝐼 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑥 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘 ∈ 𝑥 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) ) → ( ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑥 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘 ∈ 𝑥 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) ) ) |
106 |
|
oveq1 |
⊢ ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑥 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘 ∈ 𝑥 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) → ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑥 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) ) ( .r ‘ 𝑃 ) ( ( 𝑌 ‘ 𝑧 ) ↑ ( 𝑉 ‘ 𝑧 ) ) ) = ( ( 𝐺 Σg ( 𝑘 ∈ 𝑥 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) ( .r ‘ 𝑃 ) ( ( 𝑌 ‘ 𝑧 ) ↑ ( 𝑉 ‘ 𝑧 ) ) ) ) |
107 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
108 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) → 𝐼 ∈ 𝑊 ) |
109 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) → 𝑅 ∈ Ring ) |
110 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) → 𝑌 : 𝐼 ⟶ ℕ0 ) |
111 |
110
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑌 ‘ 𝑖 ) ∈ ℕ0 ) |
112 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
113 |
|
ifcl |
⊢ ( ( ( 𝑌 ‘ 𝑖 ) ∈ ℕ0 ∧ 0 ∈ ℕ0 ) → if ( 𝑖 ∈ 𝑥 , ( 𝑌 ‘ 𝑖 ) , 0 ) ∈ ℕ0 ) |
114 |
111 112 113
|
sylancl |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) ∧ 𝑖 ∈ 𝐼 ) → if ( 𝑖 ∈ 𝑥 , ( 𝑌 ‘ 𝑖 ) , 0 ) ∈ ℕ0 ) |
115 |
114
|
fmpttd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) → ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑥 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) : 𝐼 ⟶ ℕ0 ) |
116 |
|
frnnn0supp |
⊢ ( ( 𝐼 ∈ 𝑊 ∧ ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑥 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) : 𝐼 ⟶ ℕ0 ) → ( ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑥 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) supp 0 ) = ( ◡ ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑥 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) “ ℕ ) ) |
117 |
108 115 116
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) → ( ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑥 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) supp 0 ) = ( ◡ ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑥 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) “ ℕ ) ) |
118 |
|
simprll |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) → 𝑥 ∈ Fin ) |
119 |
|
eldifn |
⊢ ( 𝑖 ∈ ( 𝐼 ∖ 𝑥 ) → ¬ 𝑖 ∈ 𝑥 ) |
120 |
119
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) ∧ 𝑖 ∈ ( 𝐼 ∖ 𝑥 ) ) → ¬ 𝑖 ∈ 𝑥 ) |
121 |
120
|
iffalsed |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) ∧ 𝑖 ∈ ( 𝐼 ∖ 𝑥 ) ) → if ( 𝑖 ∈ 𝑥 , ( 𝑌 ‘ 𝑖 ) , 0 ) = 0 ) |
122 |
121 108
|
suppss2 |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) → ( ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑥 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) supp 0 ) ⊆ 𝑥 ) |
123 |
118 122
|
ssfid |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) → ( ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑥 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) supp 0 ) ∈ Fin ) |
124 |
117 123
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) → ( ◡ ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑥 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) “ ℕ ) ∈ Fin ) |
125 |
2
|
psrbag |
⊢ ( 𝐼 ∈ 𝑊 → ( ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑥 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) ∈ 𝐷 ↔ ( ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑥 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) : 𝐼 ⟶ ℕ0 ∧ ( ◡ ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑥 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) “ ℕ ) ∈ Fin ) ) ) |
126 |
108 125
|
syl |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) → ( ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑥 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) ∈ 𝐷 ↔ ( ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑥 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) : 𝐼 ⟶ ℕ0 ∧ ( ◡ ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑥 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) “ ℕ ) ∈ Fin ) ) ) |
127 |
115 124 126
|
mpbir2and |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) → ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑥 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) ∈ 𝐷 ) |
128 |
|
eqid |
⊢ ( .r ‘ 𝑃 ) = ( .r ‘ 𝑃 ) |
129 |
|
ssun2 |
⊢ { 𝑧 } ⊆ ( 𝑥 ∪ { 𝑧 } ) |
130 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) → ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) |
131 |
129 130
|
sstrid |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) → { 𝑧 } ⊆ 𝐼 ) |
132 |
|
vex |
⊢ 𝑧 ∈ V |
133 |
132
|
snss |
⊢ ( 𝑧 ∈ 𝐼 ↔ { 𝑧 } ⊆ 𝐼 ) |
134 |
131 133
|
sylibr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) → 𝑧 ∈ 𝐼 ) |
135 |
110 134
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) → ( 𝑌 ‘ 𝑧 ) ∈ ℕ0 ) |
136 |
2
|
snifpsrbag |
⊢ ( ( 𝐼 ∈ 𝑊 ∧ ( 𝑌 ‘ 𝑧 ) ∈ ℕ0 ) → ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 = 𝑧 , ( 𝑌 ‘ 𝑧 ) , 0 ) ) ∈ 𝐷 ) |
137 |
108 135 136
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) → ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 = 𝑧 , ( 𝑌 ‘ 𝑧 ) , 0 ) ) ∈ 𝐷 ) |
138 |
1 107 3 4 2 108 109 127 128 137
|
mplmonmul |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) → ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑥 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 = 𝑧 , ( 𝑌 ‘ 𝑧 ) , 0 ) ) , 1 , 0 ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑥 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) ∘f + ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 = 𝑧 , ( 𝑌 ‘ 𝑧 ) , 0 ) ) ) , 1 , 0 ) ) ) |
139 |
1 2 3 4 108 6 7 8 109 134 135
|
mplcoe3 |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 = 𝑧 , ( 𝑌 ‘ 𝑧 ) , 0 ) ) , 1 , 0 ) ) = ( ( 𝑌 ‘ 𝑧 ) ↑ ( 𝑉 ‘ 𝑧 ) ) ) |
140 |
139
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) → ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑥 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 = 𝑧 , ( 𝑌 ‘ 𝑧 ) , 0 ) ) , 1 , 0 ) ) ) = ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑥 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) ) ( .r ‘ 𝑃 ) ( ( 𝑌 ‘ 𝑧 ) ↑ ( 𝑉 ‘ 𝑧 ) ) ) ) |
141 |
135
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑌 ‘ 𝑧 ) ∈ ℕ0 ) |
142 |
|
ifcl |
⊢ ( ( ( 𝑌 ‘ 𝑧 ) ∈ ℕ0 ∧ 0 ∈ ℕ0 ) → if ( 𝑖 = 𝑧 , ( 𝑌 ‘ 𝑧 ) , 0 ) ∈ ℕ0 ) |
143 |
141 112 142
|
sylancl |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) ∧ 𝑖 ∈ 𝐼 ) → if ( 𝑖 = 𝑧 , ( 𝑌 ‘ 𝑧 ) , 0 ) ∈ ℕ0 ) |
144 |
|
eqidd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) → ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑥 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑥 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) ) |
145 |
|
eqidd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) → ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 = 𝑧 , ( 𝑌 ‘ 𝑧 ) , 0 ) ) = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 = 𝑧 , ( 𝑌 ‘ 𝑧 ) , 0 ) ) ) |
146 |
108 114 143 144 145
|
offval2 |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) → ( ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑥 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) ∘f + ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 = 𝑧 , ( 𝑌 ‘ 𝑧 ) , 0 ) ) ) = ( 𝑖 ∈ 𝐼 ↦ ( if ( 𝑖 ∈ 𝑥 , ( 𝑌 ‘ 𝑖 ) , 0 ) + if ( 𝑖 = 𝑧 , ( 𝑌 ‘ 𝑧 ) , 0 ) ) ) ) |
147 |
111
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑖 ∈ { 𝑧 } ) → ( 𝑌 ‘ 𝑖 ) ∈ ℕ0 ) |
148 |
147
|
nn0cnd |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑖 ∈ { 𝑧 } ) → ( 𝑌 ‘ 𝑖 ) ∈ ℂ ) |
149 |
148
|
addid2d |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑖 ∈ { 𝑧 } ) → ( 0 + ( 𝑌 ‘ 𝑖 ) ) = ( 𝑌 ‘ 𝑖 ) ) |
150 |
|
elsni |
⊢ ( 𝑖 ∈ { 𝑧 } → 𝑖 = 𝑧 ) |
151 |
150
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑖 ∈ { 𝑧 } ) → 𝑖 = 𝑧 ) |
152 |
|
simprlr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) → ¬ 𝑧 ∈ 𝑥 ) |
153 |
152
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑖 ∈ { 𝑧 } ) → ¬ 𝑧 ∈ 𝑥 ) |
154 |
151 153
|
eqneltrd |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑖 ∈ { 𝑧 } ) → ¬ 𝑖 ∈ 𝑥 ) |
155 |
154
|
iffalsed |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑖 ∈ { 𝑧 } ) → if ( 𝑖 ∈ 𝑥 , ( 𝑌 ‘ 𝑖 ) , 0 ) = 0 ) |
156 |
151
|
iftrued |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑖 ∈ { 𝑧 } ) → if ( 𝑖 = 𝑧 , ( 𝑌 ‘ 𝑧 ) , 0 ) = ( 𝑌 ‘ 𝑧 ) ) |
157 |
151
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑖 ∈ { 𝑧 } ) → ( 𝑌 ‘ 𝑖 ) = ( 𝑌 ‘ 𝑧 ) ) |
158 |
156 157
|
eqtr4d |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑖 ∈ { 𝑧 } ) → if ( 𝑖 = 𝑧 , ( 𝑌 ‘ 𝑧 ) , 0 ) = ( 𝑌 ‘ 𝑖 ) ) |
159 |
155 158
|
oveq12d |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑖 ∈ { 𝑧 } ) → ( if ( 𝑖 ∈ 𝑥 , ( 𝑌 ‘ 𝑖 ) , 0 ) + if ( 𝑖 = 𝑧 , ( 𝑌 ‘ 𝑧 ) , 0 ) ) = ( 0 + ( 𝑌 ‘ 𝑖 ) ) ) |
160 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑖 ∈ { 𝑧 } ) → 𝑖 ∈ { 𝑧 } ) |
161 |
129 160
|
sselid |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑖 ∈ { 𝑧 } ) → 𝑖 ∈ ( 𝑥 ∪ { 𝑧 } ) ) |
162 |
161
|
iftrued |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑖 ∈ { 𝑧 } ) → if ( 𝑖 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑌 ‘ 𝑖 ) , 0 ) = ( 𝑌 ‘ 𝑖 ) ) |
163 |
149 159 162
|
3eqtr4d |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑖 ∈ { 𝑧 } ) → ( if ( 𝑖 ∈ 𝑥 , ( 𝑌 ‘ 𝑖 ) , 0 ) + if ( 𝑖 = 𝑧 , ( 𝑌 ‘ 𝑧 ) , 0 ) ) = if ( 𝑖 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑌 ‘ 𝑖 ) , 0 ) ) |
164 |
114
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) ∧ 𝑖 ∈ 𝐼 ) ∧ ¬ 𝑖 ∈ { 𝑧 } ) → if ( 𝑖 ∈ 𝑥 , ( 𝑌 ‘ 𝑖 ) , 0 ) ∈ ℕ0 ) |
165 |
164
|
nn0cnd |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) ∧ 𝑖 ∈ 𝐼 ) ∧ ¬ 𝑖 ∈ { 𝑧 } ) → if ( 𝑖 ∈ 𝑥 , ( 𝑌 ‘ 𝑖 ) , 0 ) ∈ ℂ ) |
166 |
165
|
addid1d |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) ∧ 𝑖 ∈ 𝐼 ) ∧ ¬ 𝑖 ∈ { 𝑧 } ) → ( if ( 𝑖 ∈ 𝑥 , ( 𝑌 ‘ 𝑖 ) , 0 ) + 0 ) = if ( 𝑖 ∈ 𝑥 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) |
167 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) ∧ 𝑖 ∈ 𝐼 ) ∧ ¬ 𝑖 ∈ { 𝑧 } ) → ¬ 𝑖 ∈ { 𝑧 } ) |
168 |
|
velsn |
⊢ ( 𝑖 ∈ { 𝑧 } ↔ 𝑖 = 𝑧 ) |
169 |
167 168
|
sylnib |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) ∧ 𝑖 ∈ 𝐼 ) ∧ ¬ 𝑖 ∈ { 𝑧 } ) → ¬ 𝑖 = 𝑧 ) |
170 |
169
|
iffalsed |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) ∧ 𝑖 ∈ 𝐼 ) ∧ ¬ 𝑖 ∈ { 𝑧 } ) → if ( 𝑖 = 𝑧 , ( 𝑌 ‘ 𝑧 ) , 0 ) = 0 ) |
171 |
170
|
oveq2d |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) ∧ 𝑖 ∈ 𝐼 ) ∧ ¬ 𝑖 ∈ { 𝑧 } ) → ( if ( 𝑖 ∈ 𝑥 , ( 𝑌 ‘ 𝑖 ) , 0 ) + if ( 𝑖 = 𝑧 , ( 𝑌 ‘ 𝑧 ) , 0 ) ) = ( if ( 𝑖 ∈ 𝑥 , ( 𝑌 ‘ 𝑖 ) , 0 ) + 0 ) ) |
172 |
|
elun |
⊢ ( 𝑖 ∈ ( 𝑥 ∪ { 𝑧 } ) ↔ ( 𝑖 ∈ 𝑥 ∨ 𝑖 ∈ { 𝑧 } ) ) |
173 |
|
orcom |
⊢ ( ( 𝑖 ∈ 𝑥 ∨ 𝑖 ∈ { 𝑧 } ) ↔ ( 𝑖 ∈ { 𝑧 } ∨ 𝑖 ∈ 𝑥 ) ) |
174 |
172 173
|
bitri |
⊢ ( 𝑖 ∈ ( 𝑥 ∪ { 𝑧 } ) ↔ ( 𝑖 ∈ { 𝑧 } ∨ 𝑖 ∈ 𝑥 ) ) |
175 |
|
biorf |
⊢ ( ¬ 𝑖 ∈ { 𝑧 } → ( 𝑖 ∈ 𝑥 ↔ ( 𝑖 ∈ { 𝑧 } ∨ 𝑖 ∈ 𝑥 ) ) ) |
176 |
174 175
|
bitr4id |
⊢ ( ¬ 𝑖 ∈ { 𝑧 } → ( 𝑖 ∈ ( 𝑥 ∪ { 𝑧 } ) ↔ 𝑖 ∈ 𝑥 ) ) |
177 |
176
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) ∧ 𝑖 ∈ 𝐼 ) ∧ ¬ 𝑖 ∈ { 𝑧 } ) → ( 𝑖 ∈ ( 𝑥 ∪ { 𝑧 } ) ↔ 𝑖 ∈ 𝑥 ) ) |
178 |
177
|
ifbid |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) ∧ 𝑖 ∈ 𝐼 ) ∧ ¬ 𝑖 ∈ { 𝑧 } ) → if ( 𝑖 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑌 ‘ 𝑖 ) , 0 ) = if ( 𝑖 ∈ 𝑥 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) |
179 |
166 171 178
|
3eqtr4d |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) ∧ 𝑖 ∈ 𝐼 ) ∧ ¬ 𝑖 ∈ { 𝑧 } ) → ( if ( 𝑖 ∈ 𝑥 , ( 𝑌 ‘ 𝑖 ) , 0 ) + if ( 𝑖 = 𝑧 , ( 𝑌 ‘ 𝑧 ) , 0 ) ) = if ( 𝑖 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑌 ‘ 𝑖 ) , 0 ) ) |
180 |
163 179
|
pm2.61dan |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) ∧ 𝑖 ∈ 𝐼 ) → ( if ( 𝑖 ∈ 𝑥 , ( 𝑌 ‘ 𝑖 ) , 0 ) + if ( 𝑖 = 𝑧 , ( 𝑌 ‘ 𝑧 ) , 0 ) ) = if ( 𝑖 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑌 ‘ 𝑖 ) , 0 ) ) |
181 |
180
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) → ( 𝑖 ∈ 𝐼 ↦ ( if ( 𝑖 ∈ 𝑥 , ( 𝑌 ‘ 𝑖 ) , 0 ) + if ( 𝑖 = 𝑧 , ( 𝑌 ‘ 𝑧 ) , 0 ) ) ) = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑌 ‘ 𝑖 ) , 0 ) ) ) |
182 |
146 181
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) → ( ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑥 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) ∘f + ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 = 𝑧 , ( 𝑌 ‘ 𝑧 ) , 0 ) ) ) = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑌 ‘ 𝑖 ) , 0 ) ) ) |
183 |
182
|
eqeq2d |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) → ( 𝑦 = ( ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑥 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) ∘f + ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 = 𝑧 , ( 𝑌 ‘ 𝑧 ) , 0 ) ) ) ↔ 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑌 ‘ 𝑖 ) , 0 ) ) ) ) |
184 |
183
|
ifbid |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) → if ( 𝑦 = ( ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑥 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) ∘f + ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 = 𝑧 , ( 𝑌 ‘ 𝑧 ) , 0 ) ) ) , 1 , 0 ) = if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) ) |
185 |
184
|
mpteq2dv |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑥 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) ∘f + ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 = 𝑧 , ( 𝑌 ‘ 𝑧 ) , 0 ) ) ) , 1 , 0 ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) ) ) |
186 |
138 140 185
|
3eqtr3rd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑥 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) ) ( .r ‘ 𝑃 ) ( ( 𝑌 ‘ 𝑧 ) ↑ ( 𝑉 ‘ 𝑧 ) ) ) ) |
187 |
6 107
|
mgpbas |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝐺 ) |
188 |
6 128
|
mgpplusg |
⊢ ( .r ‘ 𝑃 ) = ( +g ‘ 𝐺 ) |
189 |
|
eqid |
⊢ ( Cntz ‘ 𝐺 ) = ( Cntz ‘ 𝐺 ) |
190 |
|
eqid |
⊢ ( 𝑘 ∈ ( 𝑥 ∪ { 𝑧 } ) ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) = ( 𝑘 ∈ ( 𝑥 ∪ { 𝑧 } ) ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) |
191 |
1
|
mplring |
⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝑅 ∈ Ring ) → 𝑃 ∈ Ring ) |
192 |
5 9 191
|
syl2anc |
⊢ ( 𝜑 → 𝑃 ∈ Ring ) |
193 |
6
|
ringmgp |
⊢ ( 𝑃 ∈ Ring → 𝐺 ∈ Mnd ) |
194 |
192 193
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ Mnd ) |
195 |
194
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) → 𝐺 ∈ Mnd ) |
196 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) → 𝑌 ∈ 𝐷 ) |
197 |
|
fveq2 |
⊢ ( 𝑥 = 𝑎 → ( 𝑉 ‘ 𝑥 ) = ( 𝑉 ‘ 𝑎 ) ) |
198 |
197
|
oveq2d |
⊢ ( 𝑥 = 𝑎 → ( ( 𝑉 ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑥 ) ) = ( ( 𝑉 ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑎 ) ) ) |
199 |
197
|
oveq1d |
⊢ ( 𝑥 = 𝑎 → ( ( 𝑉 ‘ 𝑥 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑦 ) ) = ( ( 𝑉 ‘ 𝑎 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑦 ) ) ) |
200 |
198 199
|
eqeq12d |
⊢ ( 𝑥 = 𝑎 → ( ( ( 𝑉 ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑥 ) ) = ( ( 𝑉 ‘ 𝑥 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑦 ) ) ↔ ( ( 𝑉 ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑎 ) ) = ( ( 𝑉 ‘ 𝑎 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑦 ) ) ) ) |
201 |
|
fveq2 |
⊢ ( 𝑦 = 𝑏 → ( 𝑉 ‘ 𝑦 ) = ( 𝑉 ‘ 𝑏 ) ) |
202 |
201
|
oveq1d |
⊢ ( 𝑦 = 𝑏 → ( ( 𝑉 ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑎 ) ) = ( ( 𝑉 ‘ 𝑏 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑎 ) ) ) |
203 |
201
|
oveq2d |
⊢ ( 𝑦 = 𝑏 → ( ( 𝑉 ‘ 𝑎 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑦 ) ) = ( ( 𝑉 ‘ 𝑎 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑏 ) ) ) |
204 |
202 203
|
eqeq12d |
⊢ ( 𝑦 = 𝑏 → ( ( ( 𝑉 ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑎 ) ) = ( ( 𝑉 ‘ 𝑎 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑦 ) ) ↔ ( ( 𝑉 ‘ 𝑏 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑎 ) ) = ( ( 𝑉 ‘ 𝑎 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑏 ) ) ) ) |
205 |
200 204
|
cbvral2vw |
⊢ ( ∀ 𝑥 ∈ 𝐼 ∀ 𝑦 ∈ 𝐼 ( ( 𝑉 ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑥 ) ) = ( ( 𝑉 ‘ 𝑥 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑦 ) ) ↔ ∀ 𝑎 ∈ 𝐼 ∀ 𝑏 ∈ 𝐼 ( ( 𝑉 ‘ 𝑏 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑎 ) ) = ( ( 𝑉 ‘ 𝑎 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑏 ) ) ) |
206 |
11 205
|
sylib |
⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝐼 ∀ 𝑏 ∈ 𝐼 ( ( 𝑉 ‘ 𝑏 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑎 ) ) = ( ( 𝑉 ‘ 𝑎 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑏 ) ) ) |
207 |
206
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) → ∀ 𝑎 ∈ 𝐼 ∀ 𝑏 ∈ 𝐼 ( ( 𝑉 ‘ 𝑏 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑎 ) ) = ( ( 𝑉 ‘ 𝑎 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑏 ) ) ) |
208 |
1 2 3 4 108 6 7 8 109 196 207 130
|
mplcoe5lem |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) → ran ( 𝑘 ∈ ( 𝑥 ∪ { 𝑧 } ) ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ran ( 𝑘 ∈ ( 𝑥 ∪ { 𝑧 } ) ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) ) |
209 |
102 130
|
sstrid |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) → 𝑥 ⊆ 𝐼 ) |
210 |
209
|
sselda |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) ∧ 𝑘 ∈ 𝑥 ) → 𝑘 ∈ 𝐼 ) |
211 |
194
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → 𝐺 ∈ Mnd ) |
212 |
15
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( 𝑌 ‘ 𝑘 ) ∈ ℕ0 ) |
213 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → 𝐼 ∈ 𝑊 ) |
214 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → 𝑅 ∈ Ring ) |
215 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → 𝑘 ∈ 𝐼 ) |
216 |
1 8 107 213 214 215
|
mvrcl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( 𝑉 ‘ 𝑘 ) ∈ ( Base ‘ 𝑃 ) ) |
217 |
187 7
|
mulgnn0cl |
⊢ ( ( 𝐺 ∈ Mnd ∧ ( 𝑌 ‘ 𝑘 ) ∈ ℕ0 ∧ ( 𝑉 ‘ 𝑘 ) ∈ ( Base ‘ 𝑃 ) ) → ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ∈ ( Base ‘ 𝑃 ) ) |
218 |
211 212 216 217
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ∈ ( Base ‘ 𝑃 ) ) |
219 |
218
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) ∧ 𝑘 ∈ 𝐼 ) → ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ∈ ( Base ‘ 𝑃 ) ) |
220 |
210 219
|
syldan |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) ∧ 𝑘 ∈ 𝑥 ) → ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ∈ ( Base ‘ 𝑃 ) ) |
221 |
1 8 107 108 109 134
|
mvrcl |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) → ( 𝑉 ‘ 𝑧 ) ∈ ( Base ‘ 𝑃 ) ) |
222 |
187 7
|
mulgnn0cl |
⊢ ( ( 𝐺 ∈ Mnd ∧ ( 𝑌 ‘ 𝑧 ) ∈ ℕ0 ∧ ( 𝑉 ‘ 𝑧 ) ∈ ( Base ‘ 𝑃 ) ) → ( ( 𝑌 ‘ 𝑧 ) ↑ ( 𝑉 ‘ 𝑧 ) ) ∈ ( Base ‘ 𝑃 ) ) |
223 |
195 135 221 222
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) → ( ( 𝑌 ‘ 𝑧 ) ↑ ( 𝑉 ‘ 𝑧 ) ) ∈ ( Base ‘ 𝑃 ) ) |
224 |
|
fveq2 |
⊢ ( 𝑘 = 𝑧 → ( 𝑌 ‘ 𝑘 ) = ( 𝑌 ‘ 𝑧 ) ) |
225 |
|
fveq2 |
⊢ ( 𝑘 = 𝑧 → ( 𝑉 ‘ 𝑘 ) = ( 𝑉 ‘ 𝑧 ) ) |
226 |
224 225
|
oveq12d |
⊢ ( 𝑘 = 𝑧 → ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) = ( ( 𝑌 ‘ 𝑧 ) ↑ ( 𝑉 ‘ 𝑧 ) ) ) |
227 |
226
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) ∧ 𝑘 = 𝑧 ) → ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) = ( ( 𝑌 ‘ 𝑧 ) ↑ ( 𝑉 ‘ 𝑧 ) ) ) |
228 |
187 188 189 190 195 118 208 220 134 152 223 227
|
gsumzunsnd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) → ( 𝐺 Σg ( 𝑘 ∈ ( 𝑥 ∪ { 𝑧 } ) ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) = ( ( 𝐺 Σg ( 𝑘 ∈ 𝑥 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) ( .r ‘ 𝑃 ) ( ( 𝑌 ‘ 𝑧 ) ↑ ( 𝑉 ‘ 𝑧 ) ) ) ) |
229 |
186 228
|
eqeq12d |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) → ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘 ∈ ( 𝑥 ∪ { 𝑧 } ) ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) ↔ ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑥 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) ) ( .r ‘ 𝑃 ) ( ( 𝑌 ‘ 𝑧 ) ↑ ( 𝑉 ‘ 𝑧 ) ) ) = ( ( 𝐺 Σg ( 𝑘 ∈ 𝑥 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) ( .r ‘ 𝑃 ) ( ( 𝑌 ‘ 𝑧 ) ↑ ( 𝑉 ‘ 𝑧 ) ) ) ) ) |
230 |
106 229
|
syl5ibr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) → ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑥 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘 ∈ 𝑥 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘 ∈ ( 𝑥 ∪ { 𝑧 } ) ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) ) ) |
231 |
230
|
expr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ) → ( ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 → ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑥 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘 ∈ 𝑥 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘 ∈ ( 𝑥 ∪ { 𝑧 } ) ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) ) ) ) |
232 |
231
|
a2d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ) → ( ( ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑥 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘 ∈ 𝑥 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) ) → ( ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘 ∈ ( 𝑥 ∪ { 𝑧 } ) ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) ) ) ) |
233 |
105 232
|
syl5 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ) → ( ( 𝑥 ⊆ 𝐼 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑥 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘 ∈ 𝑥 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) ) → ( ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘 ∈ ( 𝑥 ∪ { 𝑧 } ) ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) ) ) ) |
234 |
233
|
expcom |
⊢ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) → ( 𝜑 → ( ( 𝑥 ⊆ 𝐼 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑥 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘 ∈ 𝑥 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) ) → ( ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘 ∈ ( 𝑥 ∪ { 𝑧 } ) ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) ) ) ) ) |
235 |
234
|
a2d |
⊢ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) → ( ( 𝜑 → ( 𝑥 ⊆ 𝐼 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑥 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘 ∈ 𝑥 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) ) ) → ( 𝜑 → ( ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘 ∈ ( 𝑥 ∪ { 𝑧 } ) ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) ) ) ) ) |
236 |
62 74 86 98 101 235
|
findcard2s |
⊢ ( ( ◡ 𝑌 “ ℕ ) ∈ Fin → ( 𝜑 → ( ( ◡ 𝑌 “ ℕ ) ⊆ 𝐼 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ ( ◡ 𝑌 “ ℕ ) , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘 ∈ ( ◡ 𝑌 “ ℕ ) ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) ) ) ) |
237 |
40 236
|
mpcom |
⊢ ( 𝜑 → ( ( ◡ 𝑌 “ ℕ ) ⊆ 𝐼 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ ( ◡ 𝑌 “ ℕ ) , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘 ∈ ( ◡ 𝑌 “ ℕ ) ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) ) ) |
238 |
39 237
|
mpd |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ ( ◡ 𝑌 “ ℕ ) , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘 ∈ ( ◡ 𝑌 “ ℕ ) ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) ) |
239 |
39
|
resmptd |
⊢ ( 𝜑 → ( ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ↾ ( ◡ 𝑌 “ ℕ ) ) = ( 𝑘 ∈ ( ◡ 𝑌 “ ℕ ) ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) |
240 |
239
|
oveq2d |
⊢ ( 𝜑 → ( 𝐺 Σg ( ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ↾ ( ◡ 𝑌 “ ℕ ) ) ) = ( 𝐺 Σg ( 𝑘 ∈ ( ◡ 𝑌 “ ℕ ) ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) ) |
241 |
218
|
fmpttd |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) : 𝐼 ⟶ ( Base ‘ 𝑃 ) ) |
242 |
|
ssidd |
⊢ ( 𝜑 → 𝐼 ⊆ 𝐼 ) |
243 |
1 2 3 4 5 6 7 8 9 10 11 242
|
mplcoe5lem |
⊢ ( 𝜑 → ran ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ran ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) ) |
244 |
15 23 5 25
|
suppssr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐼 ∖ ( ◡ 𝑌 “ ℕ ) ) ) → ( 𝑌 ‘ 𝑘 ) = 0 ) |
245 |
244
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐼 ∖ ( ◡ 𝑌 “ ℕ ) ) ) → ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) = ( 0 ↑ ( 𝑉 ‘ 𝑘 ) ) ) |
246 |
|
eldifi |
⊢ ( 𝑘 ∈ ( 𝐼 ∖ ( ◡ 𝑌 “ ℕ ) ) → 𝑘 ∈ 𝐼 ) |
247 |
246 216
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐼 ∖ ( ◡ 𝑌 “ ℕ ) ) ) → ( 𝑉 ‘ 𝑘 ) ∈ ( Base ‘ 𝑃 ) ) |
248 |
187 57 7
|
mulg0 |
⊢ ( ( 𝑉 ‘ 𝑘 ) ∈ ( Base ‘ 𝑃 ) → ( 0 ↑ ( 𝑉 ‘ 𝑘 ) ) = ( 1r ‘ 𝑃 ) ) |
249 |
247 248
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐼 ∖ ( ◡ 𝑌 “ ℕ ) ) ) → ( 0 ↑ ( 𝑉 ‘ 𝑘 ) ) = ( 1r ‘ 𝑃 ) ) |
250 |
245 249
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐼 ∖ ( ◡ 𝑌 “ ℕ ) ) ) → ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) = ( 1r ‘ 𝑃 ) ) |
251 |
250 5
|
suppss2 |
⊢ ( 𝜑 → ( ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) supp ( 1r ‘ 𝑃 ) ) ⊆ ( ◡ 𝑌 “ ℕ ) ) |
252 |
5
|
mptexd |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ∈ V ) |
253 |
|
funmpt |
⊢ Fun ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) |
254 |
253
|
a1i |
⊢ ( 𝜑 → Fun ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) |
255 |
|
fvexd |
⊢ ( 𝜑 → ( 1r ‘ 𝑃 ) ∈ V ) |
256 |
|
suppssfifsupp |
⊢ ( ( ( ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ∈ V ∧ Fun ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ∧ ( 1r ‘ 𝑃 ) ∈ V ) ∧ ( ( ◡ 𝑌 “ ℕ ) ∈ Fin ∧ ( ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) supp ( 1r ‘ 𝑃 ) ) ⊆ ( ◡ 𝑌 “ ℕ ) ) ) → ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) finSupp ( 1r ‘ 𝑃 ) ) |
257 |
252 254 255 40 251 256
|
syl32anc |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) finSupp ( 1r ‘ 𝑃 ) ) |
258 |
187 57 189 194 5 241 243 251 257
|
gsumzres |
⊢ ( 𝜑 → ( 𝐺 Σg ( ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ↾ ( ◡ 𝑌 “ ℕ ) ) ) = ( 𝐺 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) ) |
259 |
238 240 258
|
3eqtr2d |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ ( ◡ 𝑌 “ ℕ ) , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) ) |
260 |
37 259
|
eqtrd |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) ) |