Metamath Proof Explorer


Theorem mplcoe5

Description: Decompose a monomial into a finite product of powers of variables. Instead of assuming that R is a commutative ring (as in mplcoe2 ), it is sufficient that R is a ring and all the variables of the multivariate polynomial commute. (Contributed by AV, 7-Oct-2019)

Ref Expression
Hypotheses mplcoe1.p 𝑃 = ( 𝐼 mPoly 𝑅 )
mplcoe1.d 𝐷 = { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin }
mplcoe1.z 0 = ( 0g𝑅 )
mplcoe1.o 1 = ( 1r𝑅 )
mplcoe1.i ( 𝜑𝐼𝑊 )
mplcoe2.g 𝐺 = ( mulGrp ‘ 𝑃 )
mplcoe2.m = ( .g𝐺 )
mplcoe2.v 𝑉 = ( 𝐼 mVar 𝑅 )
mplcoe5.r ( 𝜑𝑅 ∈ Ring )
mplcoe5.y ( 𝜑𝑌𝐷 )
mplcoe5.c ( 𝜑 → ∀ 𝑥𝐼𝑦𝐼 ( ( 𝑉𝑦 ) ( +g𝐺 ) ( 𝑉𝑥 ) ) = ( ( 𝑉𝑥 ) ( +g𝐺 ) ( 𝑉𝑦 ) ) )
Assertion mplcoe5 ( 𝜑 → ( 𝑦𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘𝐼 ↦ ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ) ) )

Proof

Step Hyp Ref Expression
1 mplcoe1.p 𝑃 = ( 𝐼 mPoly 𝑅 )
2 mplcoe1.d 𝐷 = { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin }
3 mplcoe1.z 0 = ( 0g𝑅 )
4 mplcoe1.o 1 = ( 1r𝑅 )
5 mplcoe1.i ( 𝜑𝐼𝑊 )
6 mplcoe2.g 𝐺 = ( mulGrp ‘ 𝑃 )
7 mplcoe2.m = ( .g𝐺 )
8 mplcoe2.v 𝑉 = ( 𝐼 mVar 𝑅 )
9 mplcoe5.r ( 𝜑𝑅 ∈ Ring )
10 mplcoe5.y ( 𝜑𝑌𝐷 )
11 mplcoe5.c ( 𝜑 → ∀ 𝑥𝐼𝑦𝐼 ( ( 𝑉𝑦 ) ( +g𝐺 ) ( 𝑉𝑥 ) ) = ( ( 𝑉𝑥 ) ( +g𝐺 ) ( 𝑉𝑦 ) ) )
12 2 psrbag ( 𝐼𝑊 → ( 𝑌𝐷 ↔ ( 𝑌 : 𝐼 ⟶ ℕ0 ∧ ( 𝑌 “ ℕ ) ∈ Fin ) ) )
13 5 12 syl ( 𝜑 → ( 𝑌𝐷 ↔ ( 𝑌 : 𝐼 ⟶ ℕ0 ∧ ( 𝑌 “ ℕ ) ∈ Fin ) ) )
14 10 13 mpbid ( 𝜑 → ( 𝑌 : 𝐼 ⟶ ℕ0 ∧ ( 𝑌 “ ℕ ) ∈ Fin ) )
15 14 simpld ( 𝜑𝑌 : 𝐼 ⟶ ℕ0 )
16 15 feqmptd ( 𝜑𝑌 = ( 𝑖𝐼 ↦ ( 𝑌𝑖 ) ) )
17 iftrue ( 𝑖 ∈ ( 𝑌 “ ℕ ) → if ( 𝑖 ∈ ( 𝑌 “ ℕ ) , ( 𝑌𝑖 ) , 0 ) = ( 𝑌𝑖 ) )
18 17 adantl ( ( ( 𝜑𝑖𝐼 ) ∧ 𝑖 ∈ ( 𝑌 “ ℕ ) ) → if ( 𝑖 ∈ ( 𝑌 “ ℕ ) , ( 𝑌𝑖 ) , 0 ) = ( 𝑌𝑖 ) )
19 eldif ( 𝑖 ∈ ( 𝐼 ∖ ( 𝑌 “ ℕ ) ) ↔ ( 𝑖𝐼 ∧ ¬ 𝑖 ∈ ( 𝑌 “ ℕ ) ) )
20 ifid if ( 𝑖 ∈ ( 𝑌 “ ℕ ) , ( 𝑌𝑖 ) , ( 𝑌𝑖 ) ) = ( 𝑌𝑖 )
21 frnnn0supp ( ( 𝐼𝑊𝑌 : 𝐼 ⟶ ℕ0 ) → ( 𝑌 supp 0 ) = ( 𝑌 “ ℕ ) )
22 5 15 21 syl2anc ( 𝜑 → ( 𝑌 supp 0 ) = ( 𝑌 “ ℕ ) )
23 eqimss ( ( 𝑌 supp 0 ) = ( 𝑌 “ ℕ ) → ( 𝑌 supp 0 ) ⊆ ( 𝑌 “ ℕ ) )
24 22 23 syl ( 𝜑 → ( 𝑌 supp 0 ) ⊆ ( 𝑌 “ ℕ ) )
25 c0ex 0 ∈ V
26 25 a1i ( 𝜑 → 0 ∈ V )
27 15 24 5 26 suppssr ( ( 𝜑𝑖 ∈ ( 𝐼 ∖ ( 𝑌 “ ℕ ) ) ) → ( 𝑌𝑖 ) = 0 )
28 27 ifeq2d ( ( 𝜑𝑖 ∈ ( 𝐼 ∖ ( 𝑌 “ ℕ ) ) ) → if ( 𝑖 ∈ ( 𝑌 “ ℕ ) , ( 𝑌𝑖 ) , ( 𝑌𝑖 ) ) = if ( 𝑖 ∈ ( 𝑌 “ ℕ ) , ( 𝑌𝑖 ) , 0 ) )
29 20 28 syl5reqr ( ( 𝜑𝑖 ∈ ( 𝐼 ∖ ( 𝑌 “ ℕ ) ) ) → if ( 𝑖 ∈ ( 𝑌 “ ℕ ) , ( 𝑌𝑖 ) , 0 ) = ( 𝑌𝑖 ) )
30 19 29 sylan2br ( ( 𝜑 ∧ ( 𝑖𝐼 ∧ ¬ 𝑖 ∈ ( 𝑌 “ ℕ ) ) ) → if ( 𝑖 ∈ ( 𝑌 “ ℕ ) , ( 𝑌𝑖 ) , 0 ) = ( 𝑌𝑖 ) )
31 30 anassrs ( ( ( 𝜑𝑖𝐼 ) ∧ ¬ 𝑖 ∈ ( 𝑌 “ ℕ ) ) → if ( 𝑖 ∈ ( 𝑌 “ ℕ ) , ( 𝑌𝑖 ) , 0 ) = ( 𝑌𝑖 ) )
32 18 31 pm2.61dan ( ( 𝜑𝑖𝐼 ) → if ( 𝑖 ∈ ( 𝑌 “ ℕ ) , ( 𝑌𝑖 ) , 0 ) = ( 𝑌𝑖 ) )
33 32 mpteq2dva ( 𝜑 → ( 𝑖𝐼 ↦ if ( 𝑖 ∈ ( 𝑌 “ ℕ ) , ( 𝑌𝑖 ) , 0 ) ) = ( 𝑖𝐼 ↦ ( 𝑌𝑖 ) ) )
34 16 33 eqtr4d ( 𝜑𝑌 = ( 𝑖𝐼 ↦ if ( 𝑖 ∈ ( 𝑌 “ ℕ ) , ( 𝑌𝑖 ) , 0 ) ) )
35 34 eqeq2d ( 𝜑 → ( 𝑦 = 𝑌𝑦 = ( 𝑖𝐼 ↦ if ( 𝑖 ∈ ( 𝑌 “ ℕ ) , ( 𝑌𝑖 ) , 0 ) ) ) )
36 35 ifbid ( 𝜑 → if ( 𝑦 = 𝑌 , 1 , 0 ) = if ( 𝑦 = ( 𝑖𝐼 ↦ if ( 𝑖 ∈ ( 𝑌 “ ℕ ) , ( 𝑌𝑖 ) , 0 ) ) , 1 , 0 ) )
37 36 mpteq2dv ( 𝜑 → ( 𝑦𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) = ( 𝑦𝐷 ↦ if ( 𝑦 = ( 𝑖𝐼 ↦ if ( 𝑖 ∈ ( 𝑌 “ ℕ ) , ( 𝑌𝑖 ) , 0 ) ) , 1 , 0 ) ) )
38 cnvimass ( 𝑌 “ ℕ ) ⊆ dom 𝑌
39 38 15 fssdm ( 𝜑 → ( 𝑌 “ ℕ ) ⊆ 𝐼 )
40 14 simprd ( 𝜑 → ( 𝑌 “ ℕ ) ∈ Fin )
41 sseq1 ( 𝑤 = ∅ → ( 𝑤𝐼 ↔ ∅ ⊆ 𝐼 ) )
42 noel ¬ 𝑖 ∈ ∅
43 eleq2 ( 𝑤 = ∅ → ( 𝑖𝑤𝑖 ∈ ∅ ) )
44 42 43 mtbiri ( 𝑤 = ∅ → ¬ 𝑖𝑤 )
45 44 iffalsed ( 𝑤 = ∅ → if ( 𝑖𝑤 , ( 𝑌𝑖 ) , 0 ) = 0 )
46 45 mpteq2dv ( 𝑤 = ∅ → ( 𝑖𝐼 ↦ if ( 𝑖𝑤 , ( 𝑌𝑖 ) , 0 ) ) = ( 𝑖𝐼 ↦ 0 ) )
47 fconstmpt ( 𝐼 × { 0 } ) = ( 𝑖𝐼 ↦ 0 )
48 46 47 eqtr4di ( 𝑤 = ∅ → ( 𝑖𝐼 ↦ if ( 𝑖𝑤 , ( 𝑌𝑖 ) , 0 ) ) = ( 𝐼 × { 0 } ) )
49 48 eqeq2d ( 𝑤 = ∅ → ( 𝑦 = ( 𝑖𝐼 ↦ if ( 𝑖𝑤 , ( 𝑌𝑖 ) , 0 ) ) ↔ 𝑦 = ( 𝐼 × { 0 } ) ) )
50 49 ifbid ( 𝑤 = ∅ → if ( 𝑦 = ( 𝑖𝐼 ↦ if ( 𝑖𝑤 , ( 𝑌𝑖 ) , 0 ) ) , 1 , 0 ) = if ( 𝑦 = ( 𝐼 × { 0 } ) , 1 , 0 ) )
51 50 mpteq2dv ( 𝑤 = ∅ → ( 𝑦𝐷 ↦ if ( 𝑦 = ( 𝑖𝐼 ↦ if ( 𝑖𝑤 , ( 𝑌𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝑦𝐷 ↦ if ( 𝑦 = ( 𝐼 × { 0 } ) , 1 , 0 ) ) )
52 mpteq1 ( 𝑤 = ∅ → ( 𝑘𝑤 ↦ ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ) = ( 𝑘 ∈ ∅ ↦ ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ) )
53 mpt0 ( 𝑘 ∈ ∅ ↦ ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ) = ∅
54 52 53 eqtrdi ( 𝑤 = ∅ → ( 𝑘𝑤 ↦ ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ) = ∅ )
55 54 oveq2d ( 𝑤 = ∅ → ( 𝐺 Σg ( 𝑘𝑤 ↦ ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ) ) = ( 𝐺 Σg ∅ ) )
56 eqid ( 1r𝑃 ) = ( 1r𝑃 )
57 6 56 ringidval ( 1r𝑃 ) = ( 0g𝐺 )
58 57 gsum0 ( 𝐺 Σg ∅ ) = ( 1r𝑃 )
59 55 58 eqtrdi ( 𝑤 = ∅ → ( 𝐺 Σg ( 𝑘𝑤 ↦ ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ) ) = ( 1r𝑃 ) )
60 51 59 eqeq12d ( 𝑤 = ∅ → ( ( 𝑦𝐷 ↦ if ( 𝑦 = ( 𝑖𝐼 ↦ if ( 𝑖𝑤 , ( 𝑌𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘𝑤 ↦ ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ) ) ↔ ( 𝑦𝐷 ↦ if ( 𝑦 = ( 𝐼 × { 0 } ) , 1 , 0 ) ) = ( 1r𝑃 ) ) )
61 41 60 imbi12d ( 𝑤 = ∅ → ( ( 𝑤𝐼 → ( 𝑦𝐷 ↦ if ( 𝑦 = ( 𝑖𝐼 ↦ if ( 𝑖𝑤 , ( 𝑌𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘𝑤 ↦ ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ) ) ) ↔ ( ∅ ⊆ 𝐼 → ( 𝑦𝐷 ↦ if ( 𝑦 = ( 𝐼 × { 0 } ) , 1 , 0 ) ) = ( 1r𝑃 ) ) ) )
62 61 imbi2d ( 𝑤 = ∅ → ( ( 𝜑 → ( 𝑤𝐼 → ( 𝑦𝐷 ↦ if ( 𝑦 = ( 𝑖𝐼 ↦ if ( 𝑖𝑤 , ( 𝑌𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘𝑤 ↦ ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ) ) ) ) ↔ ( 𝜑 → ( ∅ ⊆ 𝐼 → ( 𝑦𝐷 ↦ if ( 𝑦 = ( 𝐼 × { 0 } ) , 1 , 0 ) ) = ( 1r𝑃 ) ) ) ) )
63 sseq1 ( 𝑤 = 𝑥 → ( 𝑤𝐼𝑥𝐼 ) )
64 eleq2 ( 𝑤 = 𝑥 → ( 𝑖𝑤𝑖𝑥 ) )
65 64 ifbid ( 𝑤 = 𝑥 → if ( 𝑖𝑤 , ( 𝑌𝑖 ) , 0 ) = if ( 𝑖𝑥 , ( 𝑌𝑖 ) , 0 ) )
66 65 mpteq2dv ( 𝑤 = 𝑥 → ( 𝑖𝐼 ↦ if ( 𝑖𝑤 , ( 𝑌𝑖 ) , 0 ) ) = ( 𝑖𝐼 ↦ if ( 𝑖𝑥 , ( 𝑌𝑖 ) , 0 ) ) )
67 66 eqeq2d ( 𝑤 = 𝑥 → ( 𝑦 = ( 𝑖𝐼 ↦ if ( 𝑖𝑤 , ( 𝑌𝑖 ) , 0 ) ) ↔ 𝑦 = ( 𝑖𝐼 ↦ if ( 𝑖𝑥 , ( 𝑌𝑖 ) , 0 ) ) ) )
68 67 ifbid ( 𝑤 = 𝑥 → if ( 𝑦 = ( 𝑖𝐼 ↦ if ( 𝑖𝑤 , ( 𝑌𝑖 ) , 0 ) ) , 1 , 0 ) = if ( 𝑦 = ( 𝑖𝐼 ↦ if ( 𝑖𝑥 , ( 𝑌𝑖 ) , 0 ) ) , 1 , 0 ) )
69 68 mpteq2dv ( 𝑤 = 𝑥 → ( 𝑦𝐷 ↦ if ( 𝑦 = ( 𝑖𝐼 ↦ if ( 𝑖𝑤 , ( 𝑌𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝑦𝐷 ↦ if ( 𝑦 = ( 𝑖𝐼 ↦ if ( 𝑖𝑥 , ( 𝑌𝑖 ) , 0 ) ) , 1 , 0 ) ) )
70 mpteq1 ( 𝑤 = 𝑥 → ( 𝑘𝑤 ↦ ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ) = ( 𝑘𝑥 ↦ ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ) )
71 70 oveq2d ( 𝑤 = 𝑥 → ( 𝐺 Σg ( 𝑘𝑤 ↦ ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ) ) = ( 𝐺 Σg ( 𝑘𝑥 ↦ ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ) ) )
72 69 71 eqeq12d ( 𝑤 = 𝑥 → ( ( 𝑦𝐷 ↦ if ( 𝑦 = ( 𝑖𝐼 ↦ if ( 𝑖𝑤 , ( 𝑌𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘𝑤 ↦ ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ) ) ↔ ( 𝑦𝐷 ↦ if ( 𝑦 = ( 𝑖𝐼 ↦ if ( 𝑖𝑥 , ( 𝑌𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘𝑥 ↦ ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ) ) ) )
73 63 72 imbi12d ( 𝑤 = 𝑥 → ( ( 𝑤𝐼 → ( 𝑦𝐷 ↦ if ( 𝑦 = ( 𝑖𝐼 ↦ if ( 𝑖𝑤 , ( 𝑌𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘𝑤 ↦ ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ) ) ) ↔ ( 𝑥𝐼 → ( 𝑦𝐷 ↦ if ( 𝑦 = ( 𝑖𝐼 ↦ if ( 𝑖𝑥 , ( 𝑌𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘𝑥 ↦ ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ) ) ) ) )
74 73 imbi2d ( 𝑤 = 𝑥 → ( ( 𝜑 → ( 𝑤𝐼 → ( 𝑦𝐷 ↦ if ( 𝑦 = ( 𝑖𝐼 ↦ if ( 𝑖𝑤 , ( 𝑌𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘𝑤 ↦ ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ) ) ) ) ↔ ( 𝜑 → ( 𝑥𝐼 → ( 𝑦𝐷 ↦ if ( 𝑦 = ( 𝑖𝐼 ↦ if ( 𝑖𝑥 , ( 𝑌𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘𝑥 ↦ ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ) ) ) ) ) )
75 sseq1 ( 𝑤 = ( 𝑥 ∪ { 𝑧 } ) → ( 𝑤𝐼 ↔ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) )
76 eleq2 ( 𝑤 = ( 𝑥 ∪ { 𝑧 } ) → ( 𝑖𝑤𝑖 ∈ ( 𝑥 ∪ { 𝑧 } ) ) )
77 76 ifbid ( 𝑤 = ( 𝑥 ∪ { 𝑧 } ) → if ( 𝑖𝑤 , ( 𝑌𝑖 ) , 0 ) = if ( 𝑖 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑌𝑖 ) , 0 ) )
78 77 mpteq2dv ( 𝑤 = ( 𝑥 ∪ { 𝑧 } ) → ( 𝑖𝐼 ↦ if ( 𝑖𝑤 , ( 𝑌𝑖 ) , 0 ) ) = ( 𝑖𝐼 ↦ if ( 𝑖 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑌𝑖 ) , 0 ) ) )
79 78 eqeq2d ( 𝑤 = ( 𝑥 ∪ { 𝑧 } ) → ( 𝑦 = ( 𝑖𝐼 ↦ if ( 𝑖𝑤 , ( 𝑌𝑖 ) , 0 ) ) ↔ 𝑦 = ( 𝑖𝐼 ↦ if ( 𝑖 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑌𝑖 ) , 0 ) ) ) )
80 79 ifbid ( 𝑤 = ( 𝑥 ∪ { 𝑧 } ) → if ( 𝑦 = ( 𝑖𝐼 ↦ if ( 𝑖𝑤 , ( 𝑌𝑖 ) , 0 ) ) , 1 , 0 ) = if ( 𝑦 = ( 𝑖𝐼 ↦ if ( 𝑖 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑌𝑖 ) , 0 ) ) , 1 , 0 ) )
81 80 mpteq2dv ( 𝑤 = ( 𝑥 ∪ { 𝑧 } ) → ( 𝑦𝐷 ↦ if ( 𝑦 = ( 𝑖𝐼 ↦ if ( 𝑖𝑤 , ( 𝑌𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝑦𝐷 ↦ if ( 𝑦 = ( 𝑖𝐼 ↦ if ( 𝑖 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑌𝑖 ) , 0 ) ) , 1 , 0 ) ) )
82 mpteq1 ( 𝑤 = ( 𝑥 ∪ { 𝑧 } ) → ( 𝑘𝑤 ↦ ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ) = ( 𝑘 ∈ ( 𝑥 ∪ { 𝑧 } ) ↦ ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ) )
83 82 oveq2d ( 𝑤 = ( 𝑥 ∪ { 𝑧 } ) → ( 𝐺 Σg ( 𝑘𝑤 ↦ ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ) ) = ( 𝐺 Σg ( 𝑘 ∈ ( 𝑥 ∪ { 𝑧 } ) ↦ ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ) ) )
84 81 83 eqeq12d ( 𝑤 = ( 𝑥 ∪ { 𝑧 } ) → ( ( 𝑦𝐷 ↦ if ( 𝑦 = ( 𝑖𝐼 ↦ if ( 𝑖𝑤 , ( 𝑌𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘𝑤 ↦ ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ) ) ↔ ( 𝑦𝐷 ↦ if ( 𝑦 = ( 𝑖𝐼 ↦ if ( 𝑖 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑌𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘 ∈ ( 𝑥 ∪ { 𝑧 } ) ↦ ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ) ) ) )
85 75 84 imbi12d ( 𝑤 = ( 𝑥 ∪ { 𝑧 } ) → ( ( 𝑤𝐼 → ( 𝑦𝐷 ↦ if ( 𝑦 = ( 𝑖𝐼 ↦ if ( 𝑖𝑤 , ( 𝑌𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘𝑤 ↦ ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ) ) ) ↔ ( ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 → ( 𝑦𝐷 ↦ if ( 𝑦 = ( 𝑖𝐼 ↦ if ( 𝑖 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑌𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘 ∈ ( 𝑥 ∪ { 𝑧 } ) ↦ ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ) ) ) ) )
86 85 imbi2d ( 𝑤 = ( 𝑥 ∪ { 𝑧 } ) → ( ( 𝜑 → ( 𝑤𝐼 → ( 𝑦𝐷 ↦ if ( 𝑦 = ( 𝑖𝐼 ↦ if ( 𝑖𝑤 , ( 𝑌𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘𝑤 ↦ ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ) ) ) ) ↔ ( 𝜑 → ( ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 → ( 𝑦𝐷 ↦ if ( 𝑦 = ( 𝑖𝐼 ↦ if ( 𝑖 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑌𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘 ∈ ( 𝑥 ∪ { 𝑧 } ) ↦ ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ) ) ) ) ) )
87 sseq1 ( 𝑤 = ( 𝑌 “ ℕ ) → ( 𝑤𝐼 ↔ ( 𝑌 “ ℕ ) ⊆ 𝐼 ) )
88 eleq2 ( 𝑤 = ( 𝑌 “ ℕ ) → ( 𝑖𝑤𝑖 ∈ ( 𝑌 “ ℕ ) ) )
89 88 ifbid ( 𝑤 = ( 𝑌 “ ℕ ) → if ( 𝑖𝑤 , ( 𝑌𝑖 ) , 0 ) = if ( 𝑖 ∈ ( 𝑌 “ ℕ ) , ( 𝑌𝑖 ) , 0 ) )
90 89 mpteq2dv ( 𝑤 = ( 𝑌 “ ℕ ) → ( 𝑖𝐼 ↦ if ( 𝑖𝑤 , ( 𝑌𝑖 ) , 0 ) ) = ( 𝑖𝐼 ↦ if ( 𝑖 ∈ ( 𝑌 “ ℕ ) , ( 𝑌𝑖 ) , 0 ) ) )
91 90 eqeq2d ( 𝑤 = ( 𝑌 “ ℕ ) → ( 𝑦 = ( 𝑖𝐼 ↦ if ( 𝑖𝑤 , ( 𝑌𝑖 ) , 0 ) ) ↔ 𝑦 = ( 𝑖𝐼 ↦ if ( 𝑖 ∈ ( 𝑌 “ ℕ ) , ( 𝑌𝑖 ) , 0 ) ) ) )
92 91 ifbid ( 𝑤 = ( 𝑌 “ ℕ ) → if ( 𝑦 = ( 𝑖𝐼 ↦ if ( 𝑖𝑤 , ( 𝑌𝑖 ) , 0 ) ) , 1 , 0 ) = if ( 𝑦 = ( 𝑖𝐼 ↦ if ( 𝑖 ∈ ( 𝑌 “ ℕ ) , ( 𝑌𝑖 ) , 0 ) ) , 1 , 0 ) )
93 92 mpteq2dv ( 𝑤 = ( 𝑌 “ ℕ ) → ( 𝑦𝐷 ↦ if ( 𝑦 = ( 𝑖𝐼 ↦ if ( 𝑖𝑤 , ( 𝑌𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝑦𝐷 ↦ if ( 𝑦 = ( 𝑖𝐼 ↦ if ( 𝑖 ∈ ( 𝑌 “ ℕ ) , ( 𝑌𝑖 ) , 0 ) ) , 1 , 0 ) ) )
94 mpteq1 ( 𝑤 = ( 𝑌 “ ℕ ) → ( 𝑘𝑤 ↦ ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ) = ( 𝑘 ∈ ( 𝑌 “ ℕ ) ↦ ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ) )
95 94 oveq2d ( 𝑤 = ( 𝑌 “ ℕ ) → ( 𝐺 Σg ( 𝑘𝑤 ↦ ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ) ) = ( 𝐺 Σg ( 𝑘 ∈ ( 𝑌 “ ℕ ) ↦ ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ) ) )
96 93 95 eqeq12d ( 𝑤 = ( 𝑌 “ ℕ ) → ( ( 𝑦𝐷 ↦ if ( 𝑦 = ( 𝑖𝐼 ↦ if ( 𝑖𝑤 , ( 𝑌𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘𝑤 ↦ ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ) ) ↔ ( 𝑦𝐷 ↦ if ( 𝑦 = ( 𝑖𝐼 ↦ if ( 𝑖 ∈ ( 𝑌 “ ℕ ) , ( 𝑌𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘 ∈ ( 𝑌 “ ℕ ) ↦ ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ) ) ) )
97 87 96 imbi12d ( 𝑤 = ( 𝑌 “ ℕ ) → ( ( 𝑤𝐼 → ( 𝑦𝐷 ↦ if ( 𝑦 = ( 𝑖𝐼 ↦ if ( 𝑖𝑤 , ( 𝑌𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘𝑤 ↦ ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ) ) ) ↔ ( ( 𝑌 “ ℕ ) ⊆ 𝐼 → ( 𝑦𝐷 ↦ if ( 𝑦 = ( 𝑖𝐼 ↦ if ( 𝑖 ∈ ( 𝑌 “ ℕ ) , ( 𝑌𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘 ∈ ( 𝑌 “ ℕ ) ↦ ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ) ) ) ) )
98 97 imbi2d ( 𝑤 = ( 𝑌 “ ℕ ) → ( ( 𝜑 → ( 𝑤𝐼 → ( 𝑦𝐷 ↦ if ( 𝑦 = ( 𝑖𝐼 ↦ if ( 𝑖𝑤 , ( 𝑌𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘𝑤 ↦ ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ) ) ) ) ↔ ( 𝜑 → ( ( 𝑌 “ ℕ ) ⊆ 𝐼 → ( 𝑦𝐷 ↦ if ( 𝑦 = ( 𝑖𝐼 ↦ if ( 𝑖 ∈ ( 𝑌 “ ℕ ) , ( 𝑌𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘 ∈ ( 𝑌 “ ℕ ) ↦ ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ) ) ) ) ) )
99 1 2 3 4 56 5 9 mpl1 ( 𝜑 → ( 1r𝑃 ) = ( 𝑦𝐷 ↦ if ( 𝑦 = ( 𝐼 × { 0 } ) , 1 , 0 ) ) )
100 99 eqcomd ( 𝜑 → ( 𝑦𝐷 ↦ if ( 𝑦 = ( 𝐼 × { 0 } ) , 1 , 0 ) ) = ( 1r𝑃 ) )
101 100 a1d ( 𝜑 → ( ∅ ⊆ 𝐼 → ( 𝑦𝐷 ↦ if ( 𝑦 = ( 𝐼 × { 0 } ) , 1 , 0 ) ) = ( 1r𝑃 ) ) )
102 ssun1 𝑥 ⊆ ( 𝑥 ∪ { 𝑧 } )
103 sstr2 ( 𝑥 ⊆ ( 𝑥 ∪ { 𝑧 } ) → ( ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼𝑥𝐼 ) )
104 102 103 ax-mp ( ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼𝑥𝐼 )
105 104 imim1i ( ( 𝑥𝐼 → ( 𝑦𝐷 ↦ if ( 𝑦 = ( 𝑖𝐼 ↦ if ( 𝑖𝑥 , ( 𝑌𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘𝑥 ↦ ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ) ) ) → ( ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 → ( 𝑦𝐷 ↦ if ( 𝑦 = ( 𝑖𝐼 ↦ if ( 𝑖𝑥 , ( 𝑌𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘𝑥 ↦ ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ) ) ) )
106 oveq1 ( ( 𝑦𝐷 ↦ if ( 𝑦 = ( 𝑖𝐼 ↦ if ( 𝑖𝑥 , ( 𝑌𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘𝑥 ↦ ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ) ) → ( ( 𝑦𝐷 ↦ if ( 𝑦 = ( 𝑖𝐼 ↦ if ( 𝑖𝑥 , ( 𝑌𝑖 ) , 0 ) ) , 1 , 0 ) ) ( .r𝑃 ) ( ( 𝑌𝑧 ) ( 𝑉𝑧 ) ) ) = ( ( 𝐺 Σg ( 𝑘𝑥 ↦ ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ) ) ( .r𝑃 ) ( ( 𝑌𝑧 ) ( 𝑉𝑧 ) ) ) )
107 eqid ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 )
108 5 adantr ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) → 𝐼𝑊 )
109 9 adantr ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) → 𝑅 ∈ Ring )
110 15 adantr ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) → 𝑌 : 𝐼 ⟶ ℕ0 )
111 110 ffvelrnda ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) ∧ 𝑖𝐼 ) → ( 𝑌𝑖 ) ∈ ℕ0 )
112 0nn0 0 ∈ ℕ0
113 ifcl ( ( ( 𝑌𝑖 ) ∈ ℕ0 ∧ 0 ∈ ℕ0 ) → if ( 𝑖𝑥 , ( 𝑌𝑖 ) , 0 ) ∈ ℕ0 )
114 111 112 113 sylancl ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) ∧ 𝑖𝐼 ) → if ( 𝑖𝑥 , ( 𝑌𝑖 ) , 0 ) ∈ ℕ0 )
115 114 fmpttd ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) → ( 𝑖𝐼 ↦ if ( 𝑖𝑥 , ( 𝑌𝑖 ) , 0 ) ) : 𝐼 ⟶ ℕ0 )
116 frnnn0supp ( ( 𝐼𝑊 ∧ ( 𝑖𝐼 ↦ if ( 𝑖𝑥 , ( 𝑌𝑖 ) , 0 ) ) : 𝐼 ⟶ ℕ0 ) → ( ( 𝑖𝐼 ↦ if ( 𝑖𝑥 , ( 𝑌𝑖 ) , 0 ) ) supp 0 ) = ( ( 𝑖𝐼 ↦ if ( 𝑖𝑥 , ( 𝑌𝑖 ) , 0 ) ) “ ℕ ) )
117 108 115 116 syl2anc ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) → ( ( 𝑖𝐼 ↦ if ( 𝑖𝑥 , ( 𝑌𝑖 ) , 0 ) ) supp 0 ) = ( ( 𝑖𝐼 ↦ if ( 𝑖𝑥 , ( 𝑌𝑖 ) , 0 ) ) “ ℕ ) )
118 simprll ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) → 𝑥 ∈ Fin )
119 eldifn ( 𝑖 ∈ ( 𝐼𝑥 ) → ¬ 𝑖𝑥 )
120 119 adantl ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) ∧ 𝑖 ∈ ( 𝐼𝑥 ) ) → ¬ 𝑖𝑥 )
121 120 iffalsed ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) ∧ 𝑖 ∈ ( 𝐼𝑥 ) ) → if ( 𝑖𝑥 , ( 𝑌𝑖 ) , 0 ) = 0 )
122 121 108 suppss2 ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) → ( ( 𝑖𝐼 ↦ if ( 𝑖𝑥 , ( 𝑌𝑖 ) , 0 ) ) supp 0 ) ⊆ 𝑥 )
123 118 122 ssfid ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) → ( ( 𝑖𝐼 ↦ if ( 𝑖𝑥 , ( 𝑌𝑖 ) , 0 ) ) supp 0 ) ∈ Fin )
124 117 123 eqeltrrd ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) → ( ( 𝑖𝐼 ↦ if ( 𝑖𝑥 , ( 𝑌𝑖 ) , 0 ) ) “ ℕ ) ∈ Fin )
125 2 psrbag ( 𝐼𝑊 → ( ( 𝑖𝐼 ↦ if ( 𝑖𝑥 , ( 𝑌𝑖 ) , 0 ) ) ∈ 𝐷 ↔ ( ( 𝑖𝐼 ↦ if ( 𝑖𝑥 , ( 𝑌𝑖 ) , 0 ) ) : 𝐼 ⟶ ℕ0 ∧ ( ( 𝑖𝐼 ↦ if ( 𝑖𝑥 , ( 𝑌𝑖 ) , 0 ) ) “ ℕ ) ∈ Fin ) ) )
126 108 125 syl ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) → ( ( 𝑖𝐼 ↦ if ( 𝑖𝑥 , ( 𝑌𝑖 ) , 0 ) ) ∈ 𝐷 ↔ ( ( 𝑖𝐼 ↦ if ( 𝑖𝑥 , ( 𝑌𝑖 ) , 0 ) ) : 𝐼 ⟶ ℕ0 ∧ ( ( 𝑖𝐼 ↦ if ( 𝑖𝑥 , ( 𝑌𝑖 ) , 0 ) ) “ ℕ ) ∈ Fin ) ) )
127 115 124 126 mpbir2and ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) → ( 𝑖𝐼 ↦ if ( 𝑖𝑥 , ( 𝑌𝑖 ) , 0 ) ) ∈ 𝐷 )
128 eqid ( .r𝑃 ) = ( .r𝑃 )
129 ssun2 { 𝑧 } ⊆ ( 𝑥 ∪ { 𝑧 } )
130 simprr ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) → ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 )
131 129 130 sstrid ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) → { 𝑧 } ⊆ 𝐼 )
132 vex 𝑧 ∈ V
133 132 snss ( 𝑧𝐼 ↔ { 𝑧 } ⊆ 𝐼 )
134 131 133 sylibr ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) → 𝑧𝐼 )
135 110 134 ffvelrnd ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) → ( 𝑌𝑧 ) ∈ ℕ0 )
136 2 snifpsrbag ( ( 𝐼𝑊 ∧ ( 𝑌𝑧 ) ∈ ℕ0 ) → ( 𝑖𝐼 ↦ if ( 𝑖 = 𝑧 , ( 𝑌𝑧 ) , 0 ) ) ∈ 𝐷 )
137 108 135 136 syl2anc ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) → ( 𝑖𝐼 ↦ if ( 𝑖 = 𝑧 , ( 𝑌𝑧 ) , 0 ) ) ∈ 𝐷 )
138 1 107 3 4 2 108 109 127 128 137 mplmonmul ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) → ( ( 𝑦𝐷 ↦ if ( 𝑦 = ( 𝑖𝐼 ↦ if ( 𝑖𝑥 , ( 𝑌𝑖 ) , 0 ) ) , 1 , 0 ) ) ( .r𝑃 ) ( 𝑦𝐷 ↦ if ( 𝑦 = ( 𝑖𝐼 ↦ if ( 𝑖 = 𝑧 , ( 𝑌𝑧 ) , 0 ) ) , 1 , 0 ) ) ) = ( 𝑦𝐷 ↦ if ( 𝑦 = ( ( 𝑖𝐼 ↦ if ( 𝑖𝑥 , ( 𝑌𝑖 ) , 0 ) ) ∘f + ( 𝑖𝐼 ↦ if ( 𝑖 = 𝑧 , ( 𝑌𝑧 ) , 0 ) ) ) , 1 , 0 ) ) )
139 1 2 3 4 108 6 7 8 109 134 135 mplcoe3 ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) → ( 𝑦𝐷 ↦ if ( 𝑦 = ( 𝑖𝐼 ↦ if ( 𝑖 = 𝑧 , ( 𝑌𝑧 ) , 0 ) ) , 1 , 0 ) ) = ( ( 𝑌𝑧 ) ( 𝑉𝑧 ) ) )
140 139 oveq2d ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) → ( ( 𝑦𝐷 ↦ if ( 𝑦 = ( 𝑖𝐼 ↦ if ( 𝑖𝑥 , ( 𝑌𝑖 ) , 0 ) ) , 1 , 0 ) ) ( .r𝑃 ) ( 𝑦𝐷 ↦ if ( 𝑦 = ( 𝑖𝐼 ↦ if ( 𝑖 = 𝑧 , ( 𝑌𝑧 ) , 0 ) ) , 1 , 0 ) ) ) = ( ( 𝑦𝐷 ↦ if ( 𝑦 = ( 𝑖𝐼 ↦ if ( 𝑖𝑥 , ( 𝑌𝑖 ) , 0 ) ) , 1 , 0 ) ) ( .r𝑃 ) ( ( 𝑌𝑧 ) ( 𝑉𝑧 ) ) ) )
141 135 adantr ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) ∧ 𝑖𝐼 ) → ( 𝑌𝑧 ) ∈ ℕ0 )
142 ifcl ( ( ( 𝑌𝑧 ) ∈ ℕ0 ∧ 0 ∈ ℕ0 ) → if ( 𝑖 = 𝑧 , ( 𝑌𝑧 ) , 0 ) ∈ ℕ0 )
143 141 112 142 sylancl ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) ∧ 𝑖𝐼 ) → if ( 𝑖 = 𝑧 , ( 𝑌𝑧 ) , 0 ) ∈ ℕ0 )
144 eqidd ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) → ( 𝑖𝐼 ↦ if ( 𝑖𝑥 , ( 𝑌𝑖 ) , 0 ) ) = ( 𝑖𝐼 ↦ if ( 𝑖𝑥 , ( 𝑌𝑖 ) , 0 ) ) )
145 eqidd ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) → ( 𝑖𝐼 ↦ if ( 𝑖 = 𝑧 , ( 𝑌𝑧 ) , 0 ) ) = ( 𝑖𝐼 ↦ if ( 𝑖 = 𝑧 , ( 𝑌𝑧 ) , 0 ) ) )
146 108 114 143 144 145 offval2 ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) → ( ( 𝑖𝐼 ↦ if ( 𝑖𝑥 , ( 𝑌𝑖 ) , 0 ) ) ∘f + ( 𝑖𝐼 ↦ if ( 𝑖 = 𝑧 , ( 𝑌𝑧 ) , 0 ) ) ) = ( 𝑖𝐼 ↦ ( if ( 𝑖𝑥 , ( 𝑌𝑖 ) , 0 ) + if ( 𝑖 = 𝑧 , ( 𝑌𝑧 ) , 0 ) ) ) )
147 111 adantr ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) ∧ 𝑖𝐼 ) ∧ 𝑖 ∈ { 𝑧 } ) → ( 𝑌𝑖 ) ∈ ℕ0 )
148 147 nn0cnd ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) ∧ 𝑖𝐼 ) ∧ 𝑖 ∈ { 𝑧 } ) → ( 𝑌𝑖 ) ∈ ℂ )
149 148 addid2d ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) ∧ 𝑖𝐼 ) ∧ 𝑖 ∈ { 𝑧 } ) → ( 0 + ( 𝑌𝑖 ) ) = ( 𝑌𝑖 ) )
150 elsni ( 𝑖 ∈ { 𝑧 } → 𝑖 = 𝑧 )
151 150 adantl ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) ∧ 𝑖𝐼 ) ∧ 𝑖 ∈ { 𝑧 } ) → 𝑖 = 𝑧 )
152 simprlr ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) → ¬ 𝑧𝑥 )
153 152 ad2antrr ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) ∧ 𝑖𝐼 ) ∧ 𝑖 ∈ { 𝑧 } ) → ¬ 𝑧𝑥 )
154 151 153 eqneltrd ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) ∧ 𝑖𝐼 ) ∧ 𝑖 ∈ { 𝑧 } ) → ¬ 𝑖𝑥 )
155 154 iffalsed ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) ∧ 𝑖𝐼 ) ∧ 𝑖 ∈ { 𝑧 } ) → if ( 𝑖𝑥 , ( 𝑌𝑖 ) , 0 ) = 0 )
156 151 iftrued ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) ∧ 𝑖𝐼 ) ∧ 𝑖 ∈ { 𝑧 } ) → if ( 𝑖 = 𝑧 , ( 𝑌𝑧 ) , 0 ) = ( 𝑌𝑧 ) )
157 151 fveq2d ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) ∧ 𝑖𝐼 ) ∧ 𝑖 ∈ { 𝑧 } ) → ( 𝑌𝑖 ) = ( 𝑌𝑧 ) )
158 156 157 eqtr4d ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) ∧ 𝑖𝐼 ) ∧ 𝑖 ∈ { 𝑧 } ) → if ( 𝑖 = 𝑧 , ( 𝑌𝑧 ) , 0 ) = ( 𝑌𝑖 ) )
159 155 158 oveq12d ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) ∧ 𝑖𝐼 ) ∧ 𝑖 ∈ { 𝑧 } ) → ( if ( 𝑖𝑥 , ( 𝑌𝑖 ) , 0 ) + if ( 𝑖 = 𝑧 , ( 𝑌𝑧 ) , 0 ) ) = ( 0 + ( 𝑌𝑖 ) ) )
160 simpr ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) ∧ 𝑖𝐼 ) ∧ 𝑖 ∈ { 𝑧 } ) → 𝑖 ∈ { 𝑧 } )
161 129 160 sseldi ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) ∧ 𝑖𝐼 ) ∧ 𝑖 ∈ { 𝑧 } ) → 𝑖 ∈ ( 𝑥 ∪ { 𝑧 } ) )
162 161 iftrued ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) ∧ 𝑖𝐼 ) ∧ 𝑖 ∈ { 𝑧 } ) → if ( 𝑖 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑌𝑖 ) , 0 ) = ( 𝑌𝑖 ) )
163 149 159 162 3eqtr4d ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) ∧ 𝑖𝐼 ) ∧ 𝑖 ∈ { 𝑧 } ) → ( if ( 𝑖𝑥 , ( 𝑌𝑖 ) , 0 ) + if ( 𝑖 = 𝑧 , ( 𝑌𝑧 ) , 0 ) ) = if ( 𝑖 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑌𝑖 ) , 0 ) )
164 114 adantr ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) ∧ 𝑖𝐼 ) ∧ ¬ 𝑖 ∈ { 𝑧 } ) → if ( 𝑖𝑥 , ( 𝑌𝑖 ) , 0 ) ∈ ℕ0 )
165 164 nn0cnd ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) ∧ 𝑖𝐼 ) ∧ ¬ 𝑖 ∈ { 𝑧 } ) → if ( 𝑖𝑥 , ( 𝑌𝑖 ) , 0 ) ∈ ℂ )
166 165 addid1d ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) ∧ 𝑖𝐼 ) ∧ ¬ 𝑖 ∈ { 𝑧 } ) → ( if ( 𝑖𝑥 , ( 𝑌𝑖 ) , 0 ) + 0 ) = if ( 𝑖𝑥 , ( 𝑌𝑖 ) , 0 ) )
167 simpr ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) ∧ 𝑖𝐼 ) ∧ ¬ 𝑖 ∈ { 𝑧 } ) → ¬ 𝑖 ∈ { 𝑧 } )
168 velsn ( 𝑖 ∈ { 𝑧 } ↔ 𝑖 = 𝑧 )
169 167 168 sylnib ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) ∧ 𝑖𝐼 ) ∧ ¬ 𝑖 ∈ { 𝑧 } ) → ¬ 𝑖 = 𝑧 )
170 169 iffalsed ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) ∧ 𝑖𝐼 ) ∧ ¬ 𝑖 ∈ { 𝑧 } ) → if ( 𝑖 = 𝑧 , ( 𝑌𝑧 ) , 0 ) = 0 )
171 170 oveq2d ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) ∧ 𝑖𝐼 ) ∧ ¬ 𝑖 ∈ { 𝑧 } ) → ( if ( 𝑖𝑥 , ( 𝑌𝑖 ) , 0 ) + if ( 𝑖 = 𝑧 , ( 𝑌𝑧 ) , 0 ) ) = ( if ( 𝑖𝑥 , ( 𝑌𝑖 ) , 0 ) + 0 ) )
172 elun ( 𝑖 ∈ ( 𝑥 ∪ { 𝑧 } ) ↔ ( 𝑖𝑥𝑖 ∈ { 𝑧 } ) )
173 orcom ( ( 𝑖𝑥𝑖 ∈ { 𝑧 } ) ↔ ( 𝑖 ∈ { 𝑧 } ∨ 𝑖𝑥 ) )
174 172 173 bitri ( 𝑖 ∈ ( 𝑥 ∪ { 𝑧 } ) ↔ ( 𝑖 ∈ { 𝑧 } ∨ 𝑖𝑥 ) )
175 biorf ( ¬ 𝑖 ∈ { 𝑧 } → ( 𝑖𝑥 ↔ ( 𝑖 ∈ { 𝑧 } ∨ 𝑖𝑥 ) ) )
176 174 175 bitr4id ( ¬ 𝑖 ∈ { 𝑧 } → ( 𝑖 ∈ ( 𝑥 ∪ { 𝑧 } ) ↔ 𝑖𝑥 ) )
177 176 adantl ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) ∧ 𝑖𝐼 ) ∧ ¬ 𝑖 ∈ { 𝑧 } ) → ( 𝑖 ∈ ( 𝑥 ∪ { 𝑧 } ) ↔ 𝑖𝑥 ) )
178 177 ifbid ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) ∧ 𝑖𝐼 ) ∧ ¬ 𝑖 ∈ { 𝑧 } ) → if ( 𝑖 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑌𝑖 ) , 0 ) = if ( 𝑖𝑥 , ( 𝑌𝑖 ) , 0 ) )
179 166 171 178 3eqtr4d ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) ∧ 𝑖𝐼 ) ∧ ¬ 𝑖 ∈ { 𝑧 } ) → ( if ( 𝑖𝑥 , ( 𝑌𝑖 ) , 0 ) + if ( 𝑖 = 𝑧 , ( 𝑌𝑧 ) , 0 ) ) = if ( 𝑖 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑌𝑖 ) , 0 ) )
180 163 179 pm2.61dan ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) ∧ 𝑖𝐼 ) → ( if ( 𝑖𝑥 , ( 𝑌𝑖 ) , 0 ) + if ( 𝑖 = 𝑧 , ( 𝑌𝑧 ) , 0 ) ) = if ( 𝑖 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑌𝑖 ) , 0 ) )
181 180 mpteq2dva ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) → ( 𝑖𝐼 ↦ ( if ( 𝑖𝑥 , ( 𝑌𝑖 ) , 0 ) + if ( 𝑖 = 𝑧 , ( 𝑌𝑧 ) , 0 ) ) ) = ( 𝑖𝐼 ↦ if ( 𝑖 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑌𝑖 ) , 0 ) ) )
182 146 181 eqtrd ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) → ( ( 𝑖𝐼 ↦ if ( 𝑖𝑥 , ( 𝑌𝑖 ) , 0 ) ) ∘f + ( 𝑖𝐼 ↦ if ( 𝑖 = 𝑧 , ( 𝑌𝑧 ) , 0 ) ) ) = ( 𝑖𝐼 ↦ if ( 𝑖 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑌𝑖 ) , 0 ) ) )
183 182 eqeq2d ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) → ( 𝑦 = ( ( 𝑖𝐼 ↦ if ( 𝑖𝑥 , ( 𝑌𝑖 ) , 0 ) ) ∘f + ( 𝑖𝐼 ↦ if ( 𝑖 = 𝑧 , ( 𝑌𝑧 ) , 0 ) ) ) ↔ 𝑦 = ( 𝑖𝐼 ↦ if ( 𝑖 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑌𝑖 ) , 0 ) ) ) )
184 183 ifbid ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) → if ( 𝑦 = ( ( 𝑖𝐼 ↦ if ( 𝑖𝑥 , ( 𝑌𝑖 ) , 0 ) ) ∘f + ( 𝑖𝐼 ↦ if ( 𝑖 = 𝑧 , ( 𝑌𝑧 ) , 0 ) ) ) , 1 , 0 ) = if ( 𝑦 = ( 𝑖𝐼 ↦ if ( 𝑖 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑌𝑖 ) , 0 ) ) , 1 , 0 ) )
185 184 mpteq2dv ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) → ( 𝑦𝐷 ↦ if ( 𝑦 = ( ( 𝑖𝐼 ↦ if ( 𝑖𝑥 , ( 𝑌𝑖 ) , 0 ) ) ∘f + ( 𝑖𝐼 ↦ if ( 𝑖 = 𝑧 , ( 𝑌𝑧 ) , 0 ) ) ) , 1 , 0 ) ) = ( 𝑦𝐷 ↦ if ( 𝑦 = ( 𝑖𝐼 ↦ if ( 𝑖 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑌𝑖 ) , 0 ) ) , 1 , 0 ) ) )
186 138 140 185 3eqtr3rd ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) → ( 𝑦𝐷 ↦ if ( 𝑦 = ( 𝑖𝐼 ↦ if ( 𝑖 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑌𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( ( 𝑦𝐷 ↦ if ( 𝑦 = ( 𝑖𝐼 ↦ if ( 𝑖𝑥 , ( 𝑌𝑖 ) , 0 ) ) , 1 , 0 ) ) ( .r𝑃 ) ( ( 𝑌𝑧 ) ( 𝑉𝑧 ) ) ) )
187 6 107 mgpbas ( Base ‘ 𝑃 ) = ( Base ‘ 𝐺 )
188 6 128 mgpplusg ( .r𝑃 ) = ( +g𝐺 )
189 eqid ( Cntz ‘ 𝐺 ) = ( Cntz ‘ 𝐺 )
190 eqid ( 𝑘 ∈ ( 𝑥 ∪ { 𝑧 } ) ↦ ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ) = ( 𝑘 ∈ ( 𝑥 ∪ { 𝑧 } ) ↦ ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) )
191 1 mplring ( ( 𝐼𝑊𝑅 ∈ Ring ) → 𝑃 ∈ Ring )
192 5 9 191 syl2anc ( 𝜑𝑃 ∈ Ring )
193 6 ringmgp ( 𝑃 ∈ Ring → 𝐺 ∈ Mnd )
194 192 193 syl ( 𝜑𝐺 ∈ Mnd )
195 194 adantr ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) → 𝐺 ∈ Mnd )
196 10 adantr ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) → 𝑌𝐷 )
197 fveq2 ( 𝑥 = 𝑎 → ( 𝑉𝑥 ) = ( 𝑉𝑎 ) )
198 197 oveq2d ( 𝑥 = 𝑎 → ( ( 𝑉𝑦 ) ( +g𝐺 ) ( 𝑉𝑥 ) ) = ( ( 𝑉𝑦 ) ( +g𝐺 ) ( 𝑉𝑎 ) ) )
199 197 oveq1d ( 𝑥 = 𝑎 → ( ( 𝑉𝑥 ) ( +g𝐺 ) ( 𝑉𝑦 ) ) = ( ( 𝑉𝑎 ) ( +g𝐺 ) ( 𝑉𝑦 ) ) )
200 198 199 eqeq12d ( 𝑥 = 𝑎 → ( ( ( 𝑉𝑦 ) ( +g𝐺 ) ( 𝑉𝑥 ) ) = ( ( 𝑉𝑥 ) ( +g𝐺 ) ( 𝑉𝑦 ) ) ↔ ( ( 𝑉𝑦 ) ( +g𝐺 ) ( 𝑉𝑎 ) ) = ( ( 𝑉𝑎 ) ( +g𝐺 ) ( 𝑉𝑦 ) ) ) )
201 fveq2 ( 𝑦 = 𝑏 → ( 𝑉𝑦 ) = ( 𝑉𝑏 ) )
202 201 oveq1d ( 𝑦 = 𝑏 → ( ( 𝑉𝑦 ) ( +g𝐺 ) ( 𝑉𝑎 ) ) = ( ( 𝑉𝑏 ) ( +g𝐺 ) ( 𝑉𝑎 ) ) )
203 201 oveq2d ( 𝑦 = 𝑏 → ( ( 𝑉𝑎 ) ( +g𝐺 ) ( 𝑉𝑦 ) ) = ( ( 𝑉𝑎 ) ( +g𝐺 ) ( 𝑉𝑏 ) ) )
204 202 203 eqeq12d ( 𝑦 = 𝑏 → ( ( ( 𝑉𝑦 ) ( +g𝐺 ) ( 𝑉𝑎 ) ) = ( ( 𝑉𝑎 ) ( +g𝐺 ) ( 𝑉𝑦 ) ) ↔ ( ( 𝑉𝑏 ) ( +g𝐺 ) ( 𝑉𝑎 ) ) = ( ( 𝑉𝑎 ) ( +g𝐺 ) ( 𝑉𝑏 ) ) ) )
205 200 204 cbvral2vw ( ∀ 𝑥𝐼𝑦𝐼 ( ( 𝑉𝑦 ) ( +g𝐺 ) ( 𝑉𝑥 ) ) = ( ( 𝑉𝑥 ) ( +g𝐺 ) ( 𝑉𝑦 ) ) ↔ ∀ 𝑎𝐼𝑏𝐼 ( ( 𝑉𝑏 ) ( +g𝐺 ) ( 𝑉𝑎 ) ) = ( ( 𝑉𝑎 ) ( +g𝐺 ) ( 𝑉𝑏 ) ) )
206 11 205 sylib ( 𝜑 → ∀ 𝑎𝐼𝑏𝐼 ( ( 𝑉𝑏 ) ( +g𝐺 ) ( 𝑉𝑎 ) ) = ( ( 𝑉𝑎 ) ( +g𝐺 ) ( 𝑉𝑏 ) ) )
207 206 adantr ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) → ∀ 𝑎𝐼𝑏𝐼 ( ( 𝑉𝑏 ) ( +g𝐺 ) ( 𝑉𝑎 ) ) = ( ( 𝑉𝑎 ) ( +g𝐺 ) ( 𝑉𝑏 ) ) )
208 1 2 3 4 108 6 7 8 109 196 207 130 mplcoe5lem ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) → ran ( 𝑘 ∈ ( 𝑥 ∪ { 𝑧 } ) ↦ ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ran ( 𝑘 ∈ ( 𝑥 ∪ { 𝑧 } ) ↦ ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ) ) )
209 102 130 sstrid ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) → 𝑥𝐼 )
210 209 sselda ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) ∧ 𝑘𝑥 ) → 𝑘𝐼 )
211 194 adantr ( ( 𝜑𝑘𝐼 ) → 𝐺 ∈ Mnd )
212 15 ffvelrnda ( ( 𝜑𝑘𝐼 ) → ( 𝑌𝑘 ) ∈ ℕ0 )
213 5 adantr ( ( 𝜑𝑘𝐼 ) → 𝐼𝑊 )
214 9 adantr ( ( 𝜑𝑘𝐼 ) → 𝑅 ∈ Ring )
215 simpr ( ( 𝜑𝑘𝐼 ) → 𝑘𝐼 )
216 1 8 107 213 214 215 mvrcl ( ( 𝜑𝑘𝐼 ) → ( 𝑉𝑘 ) ∈ ( Base ‘ 𝑃 ) )
217 187 7 mulgnn0cl ( ( 𝐺 ∈ Mnd ∧ ( 𝑌𝑘 ) ∈ ℕ0 ∧ ( 𝑉𝑘 ) ∈ ( Base ‘ 𝑃 ) ) → ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ∈ ( Base ‘ 𝑃 ) )
218 211 212 216 217 syl3anc ( ( 𝜑𝑘𝐼 ) → ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ∈ ( Base ‘ 𝑃 ) )
219 218 adantlr ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) ∧ 𝑘𝐼 ) → ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ∈ ( Base ‘ 𝑃 ) )
220 210 219 syldan ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) ∧ 𝑘𝑥 ) → ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ∈ ( Base ‘ 𝑃 ) )
221 1 8 107 108 109 134 mvrcl ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) → ( 𝑉𝑧 ) ∈ ( Base ‘ 𝑃 ) )
222 187 7 mulgnn0cl ( ( 𝐺 ∈ Mnd ∧ ( 𝑌𝑧 ) ∈ ℕ0 ∧ ( 𝑉𝑧 ) ∈ ( Base ‘ 𝑃 ) ) → ( ( 𝑌𝑧 ) ( 𝑉𝑧 ) ) ∈ ( Base ‘ 𝑃 ) )
223 195 135 221 222 syl3anc ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) → ( ( 𝑌𝑧 ) ( 𝑉𝑧 ) ) ∈ ( Base ‘ 𝑃 ) )
224 fveq2 ( 𝑘 = 𝑧 → ( 𝑌𝑘 ) = ( 𝑌𝑧 ) )
225 fveq2 ( 𝑘 = 𝑧 → ( 𝑉𝑘 ) = ( 𝑉𝑧 ) )
226 224 225 oveq12d ( 𝑘 = 𝑧 → ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) = ( ( 𝑌𝑧 ) ( 𝑉𝑧 ) ) )
227 226 adantl ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) ∧ 𝑘 = 𝑧 ) → ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) = ( ( 𝑌𝑧 ) ( 𝑉𝑧 ) ) )
228 187 188 189 190 195 118 208 220 134 152 223 227 gsumzunsnd ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) → ( 𝐺 Σg ( 𝑘 ∈ ( 𝑥 ∪ { 𝑧 } ) ↦ ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ) ) = ( ( 𝐺 Σg ( 𝑘𝑥 ↦ ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ) ) ( .r𝑃 ) ( ( 𝑌𝑧 ) ( 𝑉𝑧 ) ) ) )
229 186 228 eqeq12d ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) → ( ( 𝑦𝐷 ↦ if ( 𝑦 = ( 𝑖𝐼 ↦ if ( 𝑖 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑌𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘 ∈ ( 𝑥 ∪ { 𝑧 } ) ↦ ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ) ) ↔ ( ( 𝑦𝐷 ↦ if ( 𝑦 = ( 𝑖𝐼 ↦ if ( 𝑖𝑥 , ( 𝑌𝑖 ) , 0 ) ) , 1 , 0 ) ) ( .r𝑃 ) ( ( 𝑌𝑧 ) ( 𝑉𝑧 ) ) ) = ( ( 𝐺 Σg ( 𝑘𝑥 ↦ ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ) ) ( .r𝑃 ) ( ( 𝑌𝑧 ) ( 𝑉𝑧 ) ) ) ) )
230 106 229 syl5ibr ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) → ( ( 𝑦𝐷 ↦ if ( 𝑦 = ( 𝑖𝐼 ↦ if ( 𝑖𝑥 , ( 𝑌𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘𝑥 ↦ ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ) ) → ( 𝑦𝐷 ↦ if ( 𝑦 = ( 𝑖𝐼 ↦ if ( 𝑖 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑌𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘 ∈ ( 𝑥 ∪ { 𝑧 } ) ↦ ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ) ) ) )
231 230 expr ( ( 𝜑 ∧ ( 𝑥 ∈ Fin ∧ ¬ 𝑧𝑥 ) ) → ( ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 → ( ( 𝑦𝐷 ↦ if ( 𝑦 = ( 𝑖𝐼 ↦ if ( 𝑖𝑥 , ( 𝑌𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘𝑥 ↦ ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ) ) → ( 𝑦𝐷 ↦ if ( 𝑦 = ( 𝑖𝐼 ↦ if ( 𝑖 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑌𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘 ∈ ( 𝑥 ∪ { 𝑧 } ) ↦ ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ) ) ) ) )
232 231 a2d ( ( 𝜑 ∧ ( 𝑥 ∈ Fin ∧ ¬ 𝑧𝑥 ) ) → ( ( ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 → ( 𝑦𝐷 ↦ if ( 𝑦 = ( 𝑖𝐼 ↦ if ( 𝑖𝑥 , ( 𝑌𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘𝑥 ↦ ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ) ) ) → ( ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 → ( 𝑦𝐷 ↦ if ( 𝑦 = ( 𝑖𝐼 ↦ if ( 𝑖 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑌𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘 ∈ ( 𝑥 ∪ { 𝑧 } ) ↦ ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ) ) ) ) )
233 105 232 syl5 ( ( 𝜑 ∧ ( 𝑥 ∈ Fin ∧ ¬ 𝑧𝑥 ) ) → ( ( 𝑥𝐼 → ( 𝑦𝐷 ↦ if ( 𝑦 = ( 𝑖𝐼 ↦ if ( 𝑖𝑥 , ( 𝑌𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘𝑥 ↦ ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ) ) ) → ( ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 → ( 𝑦𝐷 ↦ if ( 𝑦 = ( 𝑖𝐼 ↦ if ( 𝑖 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑌𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘 ∈ ( 𝑥 ∪ { 𝑧 } ) ↦ ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ) ) ) ) )
234 233 expcom ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧𝑥 ) → ( 𝜑 → ( ( 𝑥𝐼 → ( 𝑦𝐷 ↦ if ( 𝑦 = ( 𝑖𝐼 ↦ if ( 𝑖𝑥 , ( 𝑌𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘𝑥 ↦ ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ) ) ) → ( ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 → ( 𝑦𝐷 ↦ if ( 𝑦 = ( 𝑖𝐼 ↦ if ( 𝑖 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑌𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘 ∈ ( 𝑥 ∪ { 𝑧 } ) ↦ ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ) ) ) ) ) )
235 234 a2d ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧𝑥 ) → ( ( 𝜑 → ( 𝑥𝐼 → ( 𝑦𝐷 ↦ if ( 𝑦 = ( 𝑖𝐼 ↦ if ( 𝑖𝑥 , ( 𝑌𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘𝑥 ↦ ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ) ) ) ) → ( 𝜑 → ( ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 → ( 𝑦𝐷 ↦ if ( 𝑦 = ( 𝑖𝐼 ↦ if ( 𝑖 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑌𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘 ∈ ( 𝑥 ∪ { 𝑧 } ) ↦ ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ) ) ) ) ) )
236 62 74 86 98 101 235 findcard2s ( ( 𝑌 “ ℕ ) ∈ Fin → ( 𝜑 → ( ( 𝑌 “ ℕ ) ⊆ 𝐼 → ( 𝑦𝐷 ↦ if ( 𝑦 = ( 𝑖𝐼 ↦ if ( 𝑖 ∈ ( 𝑌 “ ℕ ) , ( 𝑌𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘 ∈ ( 𝑌 “ ℕ ) ↦ ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ) ) ) ) )
237 40 236 mpcom ( 𝜑 → ( ( 𝑌 “ ℕ ) ⊆ 𝐼 → ( 𝑦𝐷 ↦ if ( 𝑦 = ( 𝑖𝐼 ↦ if ( 𝑖 ∈ ( 𝑌 “ ℕ ) , ( 𝑌𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘 ∈ ( 𝑌 “ ℕ ) ↦ ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ) ) ) )
238 39 237 mpd ( 𝜑 → ( 𝑦𝐷 ↦ if ( 𝑦 = ( 𝑖𝐼 ↦ if ( 𝑖 ∈ ( 𝑌 “ ℕ ) , ( 𝑌𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘 ∈ ( 𝑌 “ ℕ ) ↦ ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ) ) )
239 39 resmptd ( 𝜑 → ( ( 𝑘𝐼 ↦ ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ) ↾ ( 𝑌 “ ℕ ) ) = ( 𝑘 ∈ ( 𝑌 “ ℕ ) ↦ ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ) )
240 239 oveq2d ( 𝜑 → ( 𝐺 Σg ( ( 𝑘𝐼 ↦ ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ) ↾ ( 𝑌 “ ℕ ) ) ) = ( 𝐺 Σg ( 𝑘 ∈ ( 𝑌 “ ℕ ) ↦ ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ) ) )
241 218 fmpttd ( 𝜑 → ( 𝑘𝐼 ↦ ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ) : 𝐼 ⟶ ( Base ‘ 𝑃 ) )
242 ssidd ( 𝜑𝐼𝐼 )
243 1 2 3 4 5 6 7 8 9 10 11 242 mplcoe5lem ( 𝜑 → ran ( 𝑘𝐼 ↦ ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ran ( 𝑘𝐼 ↦ ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ) ) )
244 15 24 5 26 suppssr ( ( 𝜑𝑘 ∈ ( 𝐼 ∖ ( 𝑌 “ ℕ ) ) ) → ( 𝑌𝑘 ) = 0 )
245 244 oveq1d ( ( 𝜑𝑘 ∈ ( 𝐼 ∖ ( 𝑌 “ ℕ ) ) ) → ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) = ( 0 ( 𝑉𝑘 ) ) )
246 eldifi ( 𝑘 ∈ ( 𝐼 ∖ ( 𝑌 “ ℕ ) ) → 𝑘𝐼 )
247 246 216 sylan2 ( ( 𝜑𝑘 ∈ ( 𝐼 ∖ ( 𝑌 “ ℕ ) ) ) → ( 𝑉𝑘 ) ∈ ( Base ‘ 𝑃 ) )
248 187 57 7 mulg0 ( ( 𝑉𝑘 ) ∈ ( Base ‘ 𝑃 ) → ( 0 ( 𝑉𝑘 ) ) = ( 1r𝑃 ) )
249 247 248 syl ( ( 𝜑𝑘 ∈ ( 𝐼 ∖ ( 𝑌 “ ℕ ) ) ) → ( 0 ( 𝑉𝑘 ) ) = ( 1r𝑃 ) )
250 245 249 eqtrd ( ( 𝜑𝑘 ∈ ( 𝐼 ∖ ( 𝑌 “ ℕ ) ) ) → ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) = ( 1r𝑃 ) )
251 250 5 suppss2 ( 𝜑 → ( ( 𝑘𝐼 ↦ ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ) supp ( 1r𝑃 ) ) ⊆ ( 𝑌 “ ℕ ) )
252 5 mptexd ( 𝜑 → ( 𝑘𝐼 ↦ ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ) ∈ V )
253 funmpt Fun ( 𝑘𝐼 ↦ ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) )
254 253 a1i ( 𝜑 → Fun ( 𝑘𝐼 ↦ ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ) )
255 fvexd ( 𝜑 → ( 1r𝑃 ) ∈ V )
256 suppssfifsupp ( ( ( ( 𝑘𝐼 ↦ ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ) ∈ V ∧ Fun ( 𝑘𝐼 ↦ ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ) ∧ ( 1r𝑃 ) ∈ V ) ∧ ( ( 𝑌 “ ℕ ) ∈ Fin ∧ ( ( 𝑘𝐼 ↦ ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ) supp ( 1r𝑃 ) ) ⊆ ( 𝑌 “ ℕ ) ) ) → ( 𝑘𝐼 ↦ ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ) finSupp ( 1r𝑃 ) )
257 252 254 255 40 251 256 syl32anc ( 𝜑 → ( 𝑘𝐼 ↦ ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ) finSupp ( 1r𝑃 ) )
258 187 57 189 194 5 241 243 251 257 gsumzres ( 𝜑 → ( 𝐺 Σg ( ( 𝑘𝐼 ↦ ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ) ↾ ( 𝑌 “ ℕ ) ) ) = ( 𝐺 Σg ( 𝑘𝐼 ↦ ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ) ) )
259 238 240 258 3eqtr2d ( 𝜑 → ( 𝑦𝐷 ↦ if ( 𝑦 = ( 𝑖𝐼 ↦ if ( 𝑖 ∈ ( 𝑌 “ ℕ ) , ( 𝑌𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘𝐼 ↦ ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ) ) )
260 37 259 eqtrd ( 𝜑 → ( 𝑦𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘𝐼 ↦ ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ) ) )