| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mplcoe1.p | ⊢ 𝑃  =  ( 𝐼  mPoly  𝑅 ) | 
						
							| 2 |  | mplcoe1.d | ⊢ 𝐷  =  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } | 
						
							| 3 |  | mplcoe1.z | ⊢  0   =  ( 0g ‘ 𝑅 ) | 
						
							| 4 |  | mplcoe1.o | ⊢  1   =  ( 1r ‘ 𝑅 ) | 
						
							| 5 |  | mplcoe1.i | ⊢ ( 𝜑  →  𝐼  ∈  𝑊 ) | 
						
							| 6 |  | mplcoe2.g | ⊢ 𝐺  =  ( mulGrp ‘ 𝑃 ) | 
						
							| 7 |  | mplcoe2.m | ⊢  ↑   =  ( .g ‘ 𝐺 ) | 
						
							| 8 |  | mplcoe2.v | ⊢ 𝑉  =  ( 𝐼  mVar  𝑅 ) | 
						
							| 9 |  | mplcoe5.r | ⊢ ( 𝜑  →  𝑅  ∈  Ring ) | 
						
							| 10 |  | mplcoe5.y | ⊢ ( 𝜑  →  𝑌  ∈  𝐷 ) | 
						
							| 11 |  | mplcoe5.c | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝐼 ∀ 𝑦  ∈  𝐼 ( ( 𝑉 ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑥 ) )  =  ( ( 𝑉 ‘ 𝑥 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑦 ) ) ) | 
						
							| 12 | 2 | psrbag | ⊢ ( 𝐼  ∈  𝑊  →  ( 𝑌  ∈  𝐷  ↔  ( 𝑌 : 𝐼 ⟶ ℕ0  ∧  ( ◡ 𝑌  “  ℕ )  ∈  Fin ) ) ) | 
						
							| 13 | 5 12 | syl | ⊢ ( 𝜑  →  ( 𝑌  ∈  𝐷  ↔  ( 𝑌 : 𝐼 ⟶ ℕ0  ∧  ( ◡ 𝑌  “  ℕ )  ∈  Fin ) ) ) | 
						
							| 14 | 10 13 | mpbid | ⊢ ( 𝜑  →  ( 𝑌 : 𝐼 ⟶ ℕ0  ∧  ( ◡ 𝑌  “  ℕ )  ∈  Fin ) ) | 
						
							| 15 | 14 | simpld | ⊢ ( 𝜑  →  𝑌 : 𝐼 ⟶ ℕ0 ) | 
						
							| 16 | 15 | feqmptd | ⊢ ( 𝜑  →  𝑌  =  ( 𝑖  ∈  𝐼  ↦  ( 𝑌 ‘ 𝑖 ) ) ) | 
						
							| 17 |  | iftrue | ⊢ ( 𝑖  ∈  ( ◡ 𝑌  “  ℕ )  →  if ( 𝑖  ∈  ( ◡ 𝑌  “  ℕ ) ,  ( 𝑌 ‘ 𝑖 ) ,  0 )  =  ( 𝑌 ‘ 𝑖 ) ) | 
						
							| 18 | 17 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  𝐼 )  ∧  𝑖  ∈  ( ◡ 𝑌  “  ℕ ) )  →  if ( 𝑖  ∈  ( ◡ 𝑌  “  ℕ ) ,  ( 𝑌 ‘ 𝑖 ) ,  0 )  =  ( 𝑌 ‘ 𝑖 ) ) | 
						
							| 19 |  | eldif | ⊢ ( 𝑖  ∈  ( 𝐼  ∖  ( ◡ 𝑌  “  ℕ ) )  ↔  ( 𝑖  ∈  𝐼  ∧  ¬  𝑖  ∈  ( ◡ 𝑌  “  ℕ ) ) ) | 
						
							| 20 |  | fcdmnn0supp | ⊢ ( ( 𝐼  ∈  𝑊  ∧  𝑌 : 𝐼 ⟶ ℕ0 )  →  ( 𝑌  supp  0 )  =  ( ◡ 𝑌  “  ℕ ) ) | 
						
							| 21 | 5 15 20 | syl2anc | ⊢ ( 𝜑  →  ( 𝑌  supp  0 )  =  ( ◡ 𝑌  “  ℕ ) ) | 
						
							| 22 |  | eqimss | ⊢ ( ( 𝑌  supp  0 )  =  ( ◡ 𝑌  “  ℕ )  →  ( 𝑌  supp  0 )  ⊆  ( ◡ 𝑌  “  ℕ ) ) | 
						
							| 23 | 21 22 | syl | ⊢ ( 𝜑  →  ( 𝑌  supp  0 )  ⊆  ( ◡ 𝑌  “  ℕ ) ) | 
						
							| 24 |  | c0ex | ⊢ 0  ∈  V | 
						
							| 25 | 24 | a1i | ⊢ ( 𝜑  →  0  ∈  V ) | 
						
							| 26 | 15 23 5 25 | suppssr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 𝐼  ∖  ( ◡ 𝑌  “  ℕ ) ) )  →  ( 𝑌 ‘ 𝑖 )  =  0 ) | 
						
							| 27 | 26 | ifeq2d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 𝐼  ∖  ( ◡ 𝑌  “  ℕ ) ) )  →  if ( 𝑖  ∈  ( ◡ 𝑌  “  ℕ ) ,  ( 𝑌 ‘ 𝑖 ) ,  ( 𝑌 ‘ 𝑖 ) )  =  if ( 𝑖  ∈  ( ◡ 𝑌  “  ℕ ) ,  ( 𝑌 ‘ 𝑖 ) ,  0 ) ) | 
						
							| 28 |  | ifid | ⊢ if ( 𝑖  ∈  ( ◡ 𝑌  “  ℕ ) ,  ( 𝑌 ‘ 𝑖 ) ,  ( 𝑌 ‘ 𝑖 ) )  =  ( 𝑌 ‘ 𝑖 ) | 
						
							| 29 | 27 28 | eqtr3di | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 𝐼  ∖  ( ◡ 𝑌  “  ℕ ) ) )  →  if ( 𝑖  ∈  ( ◡ 𝑌  “  ℕ ) ,  ( 𝑌 ‘ 𝑖 ) ,  0 )  =  ( 𝑌 ‘ 𝑖 ) ) | 
						
							| 30 | 19 29 | sylan2br | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝐼  ∧  ¬  𝑖  ∈  ( ◡ 𝑌  “  ℕ ) ) )  →  if ( 𝑖  ∈  ( ◡ 𝑌  “  ℕ ) ,  ( 𝑌 ‘ 𝑖 ) ,  0 )  =  ( 𝑌 ‘ 𝑖 ) ) | 
						
							| 31 | 30 | anassrs | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  𝐼 )  ∧  ¬  𝑖  ∈  ( ◡ 𝑌  “  ℕ ) )  →  if ( 𝑖  ∈  ( ◡ 𝑌  “  ℕ ) ,  ( 𝑌 ‘ 𝑖 ) ,  0 )  =  ( 𝑌 ‘ 𝑖 ) ) | 
						
							| 32 | 18 31 | pm2.61dan | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝐼 )  →  if ( 𝑖  ∈  ( ◡ 𝑌  “  ℕ ) ,  ( 𝑌 ‘ 𝑖 ) ,  0 )  =  ( 𝑌 ‘ 𝑖 ) ) | 
						
							| 33 | 32 | mpteq2dva | ⊢ ( 𝜑  →  ( 𝑖  ∈  𝐼  ↦  if ( 𝑖  ∈  ( ◡ 𝑌  “  ℕ ) ,  ( 𝑌 ‘ 𝑖 ) ,  0 ) )  =  ( 𝑖  ∈  𝐼  ↦  ( 𝑌 ‘ 𝑖 ) ) ) | 
						
							| 34 | 16 33 | eqtr4d | ⊢ ( 𝜑  →  𝑌  =  ( 𝑖  ∈  𝐼  ↦  if ( 𝑖  ∈  ( ◡ 𝑌  “  ℕ ) ,  ( 𝑌 ‘ 𝑖 ) ,  0 ) ) ) | 
						
							| 35 | 34 | eqeq2d | ⊢ ( 𝜑  →  ( 𝑦  =  𝑌  ↔  𝑦  =  ( 𝑖  ∈  𝐼  ↦  if ( 𝑖  ∈  ( ◡ 𝑌  “  ℕ ) ,  ( 𝑌 ‘ 𝑖 ) ,  0 ) ) ) ) | 
						
							| 36 | 35 | ifbid | ⊢ ( 𝜑  →  if ( 𝑦  =  𝑌 ,   1  ,   0  )  =  if ( 𝑦  =  ( 𝑖  ∈  𝐼  ↦  if ( 𝑖  ∈  ( ◡ 𝑌  “  ℕ ) ,  ( 𝑌 ‘ 𝑖 ) ,  0 ) ) ,   1  ,   0  ) ) | 
						
							| 37 | 36 | mpteq2dv | ⊢ ( 𝜑  →  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑌 ,   1  ,   0  ) )  =  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  ( 𝑖  ∈  𝐼  ↦  if ( 𝑖  ∈  ( ◡ 𝑌  “  ℕ ) ,  ( 𝑌 ‘ 𝑖 ) ,  0 ) ) ,   1  ,   0  ) ) ) | 
						
							| 38 |  | cnvimass | ⊢ ( ◡ 𝑌  “  ℕ )  ⊆  dom  𝑌 | 
						
							| 39 | 38 15 | fssdm | ⊢ ( 𝜑  →  ( ◡ 𝑌  “  ℕ )  ⊆  𝐼 ) | 
						
							| 40 | 14 | simprd | ⊢ ( 𝜑  →  ( ◡ 𝑌  “  ℕ )  ∈  Fin ) | 
						
							| 41 |  | sseq1 | ⊢ ( 𝑤  =  ∅  →  ( 𝑤  ⊆  𝐼  ↔  ∅  ⊆  𝐼 ) ) | 
						
							| 42 |  | noel | ⊢ ¬  𝑖  ∈  ∅ | 
						
							| 43 |  | eleq2 | ⊢ ( 𝑤  =  ∅  →  ( 𝑖  ∈  𝑤  ↔  𝑖  ∈  ∅ ) ) | 
						
							| 44 | 42 43 | mtbiri | ⊢ ( 𝑤  =  ∅  →  ¬  𝑖  ∈  𝑤 ) | 
						
							| 45 | 44 | iffalsed | ⊢ ( 𝑤  =  ∅  →  if ( 𝑖  ∈  𝑤 ,  ( 𝑌 ‘ 𝑖 ) ,  0 )  =  0 ) | 
						
							| 46 | 45 | mpteq2dv | ⊢ ( 𝑤  =  ∅  →  ( 𝑖  ∈  𝐼  ↦  if ( 𝑖  ∈  𝑤 ,  ( 𝑌 ‘ 𝑖 ) ,  0 ) )  =  ( 𝑖  ∈  𝐼  ↦  0 ) ) | 
						
							| 47 |  | fconstmpt | ⊢ ( 𝐼  ×  { 0 } )  =  ( 𝑖  ∈  𝐼  ↦  0 ) | 
						
							| 48 | 46 47 | eqtr4di | ⊢ ( 𝑤  =  ∅  →  ( 𝑖  ∈  𝐼  ↦  if ( 𝑖  ∈  𝑤 ,  ( 𝑌 ‘ 𝑖 ) ,  0 ) )  =  ( 𝐼  ×  { 0 } ) ) | 
						
							| 49 | 48 | eqeq2d | ⊢ ( 𝑤  =  ∅  →  ( 𝑦  =  ( 𝑖  ∈  𝐼  ↦  if ( 𝑖  ∈  𝑤 ,  ( 𝑌 ‘ 𝑖 ) ,  0 ) )  ↔  𝑦  =  ( 𝐼  ×  { 0 } ) ) ) | 
						
							| 50 | 49 | ifbid | ⊢ ( 𝑤  =  ∅  →  if ( 𝑦  =  ( 𝑖  ∈  𝐼  ↦  if ( 𝑖  ∈  𝑤 ,  ( 𝑌 ‘ 𝑖 ) ,  0 ) ) ,   1  ,   0  )  =  if ( 𝑦  =  ( 𝐼  ×  { 0 } ) ,   1  ,   0  ) ) | 
						
							| 51 | 50 | mpteq2dv | ⊢ ( 𝑤  =  ∅  →  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  ( 𝑖  ∈  𝐼  ↦  if ( 𝑖  ∈  𝑤 ,  ( 𝑌 ‘ 𝑖 ) ,  0 ) ) ,   1  ,   0  ) )  =  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  ( 𝐼  ×  { 0 } ) ,   1  ,   0  ) ) ) | 
						
							| 52 |  | mpteq1 | ⊢ ( 𝑤  =  ∅  →  ( 𝑘  ∈  𝑤  ↦  ( ( 𝑌 ‘ 𝑘 )  ↑  ( 𝑉 ‘ 𝑘 ) ) )  =  ( 𝑘  ∈  ∅  ↦  ( ( 𝑌 ‘ 𝑘 )  ↑  ( 𝑉 ‘ 𝑘 ) ) ) ) | 
						
							| 53 |  | mpt0 | ⊢ ( 𝑘  ∈  ∅  ↦  ( ( 𝑌 ‘ 𝑘 )  ↑  ( 𝑉 ‘ 𝑘 ) ) )  =  ∅ | 
						
							| 54 | 52 53 | eqtrdi | ⊢ ( 𝑤  =  ∅  →  ( 𝑘  ∈  𝑤  ↦  ( ( 𝑌 ‘ 𝑘 )  ↑  ( 𝑉 ‘ 𝑘 ) ) )  =  ∅ ) | 
						
							| 55 | 54 | oveq2d | ⊢ ( 𝑤  =  ∅  →  ( 𝐺  Σg  ( 𝑘  ∈  𝑤  ↦  ( ( 𝑌 ‘ 𝑘 )  ↑  ( 𝑉 ‘ 𝑘 ) ) ) )  =  ( 𝐺  Σg  ∅ ) ) | 
						
							| 56 |  | eqid | ⊢ ( 1r ‘ 𝑃 )  =  ( 1r ‘ 𝑃 ) | 
						
							| 57 | 6 56 | ringidval | ⊢ ( 1r ‘ 𝑃 )  =  ( 0g ‘ 𝐺 ) | 
						
							| 58 | 57 | gsum0 | ⊢ ( 𝐺  Σg  ∅ )  =  ( 1r ‘ 𝑃 ) | 
						
							| 59 | 55 58 | eqtrdi | ⊢ ( 𝑤  =  ∅  →  ( 𝐺  Σg  ( 𝑘  ∈  𝑤  ↦  ( ( 𝑌 ‘ 𝑘 )  ↑  ( 𝑉 ‘ 𝑘 ) ) ) )  =  ( 1r ‘ 𝑃 ) ) | 
						
							| 60 | 51 59 | eqeq12d | ⊢ ( 𝑤  =  ∅  →  ( ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  ( 𝑖  ∈  𝐼  ↦  if ( 𝑖  ∈  𝑤 ,  ( 𝑌 ‘ 𝑖 ) ,  0 ) ) ,   1  ,   0  ) )  =  ( 𝐺  Σg  ( 𝑘  ∈  𝑤  ↦  ( ( 𝑌 ‘ 𝑘 )  ↑  ( 𝑉 ‘ 𝑘 ) ) ) )  ↔  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  ( 𝐼  ×  { 0 } ) ,   1  ,   0  ) )  =  ( 1r ‘ 𝑃 ) ) ) | 
						
							| 61 | 41 60 | imbi12d | ⊢ ( 𝑤  =  ∅  →  ( ( 𝑤  ⊆  𝐼  →  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  ( 𝑖  ∈  𝐼  ↦  if ( 𝑖  ∈  𝑤 ,  ( 𝑌 ‘ 𝑖 ) ,  0 ) ) ,   1  ,   0  ) )  =  ( 𝐺  Σg  ( 𝑘  ∈  𝑤  ↦  ( ( 𝑌 ‘ 𝑘 )  ↑  ( 𝑉 ‘ 𝑘 ) ) ) ) )  ↔  ( ∅  ⊆  𝐼  →  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  ( 𝐼  ×  { 0 } ) ,   1  ,   0  ) )  =  ( 1r ‘ 𝑃 ) ) ) ) | 
						
							| 62 | 61 | imbi2d | ⊢ ( 𝑤  =  ∅  →  ( ( 𝜑  →  ( 𝑤  ⊆  𝐼  →  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  ( 𝑖  ∈  𝐼  ↦  if ( 𝑖  ∈  𝑤 ,  ( 𝑌 ‘ 𝑖 ) ,  0 ) ) ,   1  ,   0  ) )  =  ( 𝐺  Σg  ( 𝑘  ∈  𝑤  ↦  ( ( 𝑌 ‘ 𝑘 )  ↑  ( 𝑉 ‘ 𝑘 ) ) ) ) ) )  ↔  ( 𝜑  →  ( ∅  ⊆  𝐼  →  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  ( 𝐼  ×  { 0 } ) ,   1  ,   0  ) )  =  ( 1r ‘ 𝑃 ) ) ) ) ) | 
						
							| 63 |  | sseq1 | ⊢ ( 𝑤  =  𝑥  →  ( 𝑤  ⊆  𝐼  ↔  𝑥  ⊆  𝐼 ) ) | 
						
							| 64 |  | eleq2 | ⊢ ( 𝑤  =  𝑥  →  ( 𝑖  ∈  𝑤  ↔  𝑖  ∈  𝑥 ) ) | 
						
							| 65 | 64 | ifbid | ⊢ ( 𝑤  =  𝑥  →  if ( 𝑖  ∈  𝑤 ,  ( 𝑌 ‘ 𝑖 ) ,  0 )  =  if ( 𝑖  ∈  𝑥 ,  ( 𝑌 ‘ 𝑖 ) ,  0 ) ) | 
						
							| 66 | 65 | mpteq2dv | ⊢ ( 𝑤  =  𝑥  →  ( 𝑖  ∈  𝐼  ↦  if ( 𝑖  ∈  𝑤 ,  ( 𝑌 ‘ 𝑖 ) ,  0 ) )  =  ( 𝑖  ∈  𝐼  ↦  if ( 𝑖  ∈  𝑥 ,  ( 𝑌 ‘ 𝑖 ) ,  0 ) ) ) | 
						
							| 67 | 66 | eqeq2d | ⊢ ( 𝑤  =  𝑥  →  ( 𝑦  =  ( 𝑖  ∈  𝐼  ↦  if ( 𝑖  ∈  𝑤 ,  ( 𝑌 ‘ 𝑖 ) ,  0 ) )  ↔  𝑦  =  ( 𝑖  ∈  𝐼  ↦  if ( 𝑖  ∈  𝑥 ,  ( 𝑌 ‘ 𝑖 ) ,  0 ) ) ) ) | 
						
							| 68 | 67 | ifbid | ⊢ ( 𝑤  =  𝑥  →  if ( 𝑦  =  ( 𝑖  ∈  𝐼  ↦  if ( 𝑖  ∈  𝑤 ,  ( 𝑌 ‘ 𝑖 ) ,  0 ) ) ,   1  ,   0  )  =  if ( 𝑦  =  ( 𝑖  ∈  𝐼  ↦  if ( 𝑖  ∈  𝑥 ,  ( 𝑌 ‘ 𝑖 ) ,  0 ) ) ,   1  ,   0  ) ) | 
						
							| 69 | 68 | mpteq2dv | ⊢ ( 𝑤  =  𝑥  →  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  ( 𝑖  ∈  𝐼  ↦  if ( 𝑖  ∈  𝑤 ,  ( 𝑌 ‘ 𝑖 ) ,  0 ) ) ,   1  ,   0  ) )  =  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  ( 𝑖  ∈  𝐼  ↦  if ( 𝑖  ∈  𝑥 ,  ( 𝑌 ‘ 𝑖 ) ,  0 ) ) ,   1  ,   0  ) ) ) | 
						
							| 70 |  | mpteq1 | ⊢ ( 𝑤  =  𝑥  →  ( 𝑘  ∈  𝑤  ↦  ( ( 𝑌 ‘ 𝑘 )  ↑  ( 𝑉 ‘ 𝑘 ) ) )  =  ( 𝑘  ∈  𝑥  ↦  ( ( 𝑌 ‘ 𝑘 )  ↑  ( 𝑉 ‘ 𝑘 ) ) ) ) | 
						
							| 71 | 70 | oveq2d | ⊢ ( 𝑤  =  𝑥  →  ( 𝐺  Σg  ( 𝑘  ∈  𝑤  ↦  ( ( 𝑌 ‘ 𝑘 )  ↑  ( 𝑉 ‘ 𝑘 ) ) ) )  =  ( 𝐺  Σg  ( 𝑘  ∈  𝑥  ↦  ( ( 𝑌 ‘ 𝑘 )  ↑  ( 𝑉 ‘ 𝑘 ) ) ) ) ) | 
						
							| 72 | 69 71 | eqeq12d | ⊢ ( 𝑤  =  𝑥  →  ( ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  ( 𝑖  ∈  𝐼  ↦  if ( 𝑖  ∈  𝑤 ,  ( 𝑌 ‘ 𝑖 ) ,  0 ) ) ,   1  ,   0  ) )  =  ( 𝐺  Σg  ( 𝑘  ∈  𝑤  ↦  ( ( 𝑌 ‘ 𝑘 )  ↑  ( 𝑉 ‘ 𝑘 ) ) ) )  ↔  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  ( 𝑖  ∈  𝐼  ↦  if ( 𝑖  ∈  𝑥 ,  ( 𝑌 ‘ 𝑖 ) ,  0 ) ) ,   1  ,   0  ) )  =  ( 𝐺  Σg  ( 𝑘  ∈  𝑥  ↦  ( ( 𝑌 ‘ 𝑘 )  ↑  ( 𝑉 ‘ 𝑘 ) ) ) ) ) ) | 
						
							| 73 | 63 72 | imbi12d | ⊢ ( 𝑤  =  𝑥  →  ( ( 𝑤  ⊆  𝐼  →  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  ( 𝑖  ∈  𝐼  ↦  if ( 𝑖  ∈  𝑤 ,  ( 𝑌 ‘ 𝑖 ) ,  0 ) ) ,   1  ,   0  ) )  =  ( 𝐺  Σg  ( 𝑘  ∈  𝑤  ↦  ( ( 𝑌 ‘ 𝑘 )  ↑  ( 𝑉 ‘ 𝑘 ) ) ) ) )  ↔  ( 𝑥  ⊆  𝐼  →  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  ( 𝑖  ∈  𝐼  ↦  if ( 𝑖  ∈  𝑥 ,  ( 𝑌 ‘ 𝑖 ) ,  0 ) ) ,   1  ,   0  ) )  =  ( 𝐺  Σg  ( 𝑘  ∈  𝑥  ↦  ( ( 𝑌 ‘ 𝑘 )  ↑  ( 𝑉 ‘ 𝑘 ) ) ) ) ) ) ) | 
						
							| 74 | 73 | imbi2d | ⊢ ( 𝑤  =  𝑥  →  ( ( 𝜑  →  ( 𝑤  ⊆  𝐼  →  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  ( 𝑖  ∈  𝐼  ↦  if ( 𝑖  ∈  𝑤 ,  ( 𝑌 ‘ 𝑖 ) ,  0 ) ) ,   1  ,   0  ) )  =  ( 𝐺  Σg  ( 𝑘  ∈  𝑤  ↦  ( ( 𝑌 ‘ 𝑘 )  ↑  ( 𝑉 ‘ 𝑘 ) ) ) ) ) )  ↔  ( 𝜑  →  ( 𝑥  ⊆  𝐼  →  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  ( 𝑖  ∈  𝐼  ↦  if ( 𝑖  ∈  𝑥 ,  ( 𝑌 ‘ 𝑖 ) ,  0 ) ) ,   1  ,   0  ) )  =  ( 𝐺  Σg  ( 𝑘  ∈  𝑥  ↦  ( ( 𝑌 ‘ 𝑘 )  ↑  ( 𝑉 ‘ 𝑘 ) ) ) ) ) ) ) ) | 
						
							| 75 |  | sseq1 | ⊢ ( 𝑤  =  ( 𝑥  ∪  { 𝑧 } )  →  ( 𝑤  ⊆  𝐼  ↔  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐼 ) ) | 
						
							| 76 |  | eleq2 | ⊢ ( 𝑤  =  ( 𝑥  ∪  { 𝑧 } )  →  ( 𝑖  ∈  𝑤  ↔  𝑖  ∈  ( 𝑥  ∪  { 𝑧 } ) ) ) | 
						
							| 77 | 76 | ifbid | ⊢ ( 𝑤  =  ( 𝑥  ∪  { 𝑧 } )  →  if ( 𝑖  ∈  𝑤 ,  ( 𝑌 ‘ 𝑖 ) ,  0 )  =  if ( 𝑖  ∈  ( 𝑥  ∪  { 𝑧 } ) ,  ( 𝑌 ‘ 𝑖 ) ,  0 ) ) | 
						
							| 78 | 77 | mpteq2dv | ⊢ ( 𝑤  =  ( 𝑥  ∪  { 𝑧 } )  →  ( 𝑖  ∈  𝐼  ↦  if ( 𝑖  ∈  𝑤 ,  ( 𝑌 ‘ 𝑖 ) ,  0 ) )  =  ( 𝑖  ∈  𝐼  ↦  if ( 𝑖  ∈  ( 𝑥  ∪  { 𝑧 } ) ,  ( 𝑌 ‘ 𝑖 ) ,  0 ) ) ) | 
						
							| 79 | 78 | eqeq2d | ⊢ ( 𝑤  =  ( 𝑥  ∪  { 𝑧 } )  →  ( 𝑦  =  ( 𝑖  ∈  𝐼  ↦  if ( 𝑖  ∈  𝑤 ,  ( 𝑌 ‘ 𝑖 ) ,  0 ) )  ↔  𝑦  =  ( 𝑖  ∈  𝐼  ↦  if ( 𝑖  ∈  ( 𝑥  ∪  { 𝑧 } ) ,  ( 𝑌 ‘ 𝑖 ) ,  0 ) ) ) ) | 
						
							| 80 | 79 | ifbid | ⊢ ( 𝑤  =  ( 𝑥  ∪  { 𝑧 } )  →  if ( 𝑦  =  ( 𝑖  ∈  𝐼  ↦  if ( 𝑖  ∈  𝑤 ,  ( 𝑌 ‘ 𝑖 ) ,  0 ) ) ,   1  ,   0  )  =  if ( 𝑦  =  ( 𝑖  ∈  𝐼  ↦  if ( 𝑖  ∈  ( 𝑥  ∪  { 𝑧 } ) ,  ( 𝑌 ‘ 𝑖 ) ,  0 ) ) ,   1  ,   0  ) ) | 
						
							| 81 | 80 | mpteq2dv | ⊢ ( 𝑤  =  ( 𝑥  ∪  { 𝑧 } )  →  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  ( 𝑖  ∈  𝐼  ↦  if ( 𝑖  ∈  𝑤 ,  ( 𝑌 ‘ 𝑖 ) ,  0 ) ) ,   1  ,   0  ) )  =  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  ( 𝑖  ∈  𝐼  ↦  if ( 𝑖  ∈  ( 𝑥  ∪  { 𝑧 } ) ,  ( 𝑌 ‘ 𝑖 ) ,  0 ) ) ,   1  ,   0  ) ) ) | 
						
							| 82 |  | mpteq1 | ⊢ ( 𝑤  =  ( 𝑥  ∪  { 𝑧 } )  →  ( 𝑘  ∈  𝑤  ↦  ( ( 𝑌 ‘ 𝑘 )  ↑  ( 𝑉 ‘ 𝑘 ) ) )  =  ( 𝑘  ∈  ( 𝑥  ∪  { 𝑧 } )  ↦  ( ( 𝑌 ‘ 𝑘 )  ↑  ( 𝑉 ‘ 𝑘 ) ) ) ) | 
						
							| 83 | 82 | oveq2d | ⊢ ( 𝑤  =  ( 𝑥  ∪  { 𝑧 } )  →  ( 𝐺  Σg  ( 𝑘  ∈  𝑤  ↦  ( ( 𝑌 ‘ 𝑘 )  ↑  ( 𝑉 ‘ 𝑘 ) ) ) )  =  ( 𝐺  Σg  ( 𝑘  ∈  ( 𝑥  ∪  { 𝑧 } )  ↦  ( ( 𝑌 ‘ 𝑘 )  ↑  ( 𝑉 ‘ 𝑘 ) ) ) ) ) | 
						
							| 84 | 81 83 | eqeq12d | ⊢ ( 𝑤  =  ( 𝑥  ∪  { 𝑧 } )  →  ( ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  ( 𝑖  ∈  𝐼  ↦  if ( 𝑖  ∈  𝑤 ,  ( 𝑌 ‘ 𝑖 ) ,  0 ) ) ,   1  ,   0  ) )  =  ( 𝐺  Σg  ( 𝑘  ∈  𝑤  ↦  ( ( 𝑌 ‘ 𝑘 )  ↑  ( 𝑉 ‘ 𝑘 ) ) ) )  ↔  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  ( 𝑖  ∈  𝐼  ↦  if ( 𝑖  ∈  ( 𝑥  ∪  { 𝑧 } ) ,  ( 𝑌 ‘ 𝑖 ) ,  0 ) ) ,   1  ,   0  ) )  =  ( 𝐺  Σg  ( 𝑘  ∈  ( 𝑥  ∪  { 𝑧 } )  ↦  ( ( 𝑌 ‘ 𝑘 )  ↑  ( 𝑉 ‘ 𝑘 ) ) ) ) ) ) | 
						
							| 85 | 75 84 | imbi12d | ⊢ ( 𝑤  =  ( 𝑥  ∪  { 𝑧 } )  →  ( ( 𝑤  ⊆  𝐼  →  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  ( 𝑖  ∈  𝐼  ↦  if ( 𝑖  ∈  𝑤 ,  ( 𝑌 ‘ 𝑖 ) ,  0 ) ) ,   1  ,   0  ) )  =  ( 𝐺  Σg  ( 𝑘  ∈  𝑤  ↦  ( ( 𝑌 ‘ 𝑘 )  ↑  ( 𝑉 ‘ 𝑘 ) ) ) ) )  ↔  ( ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐼  →  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  ( 𝑖  ∈  𝐼  ↦  if ( 𝑖  ∈  ( 𝑥  ∪  { 𝑧 } ) ,  ( 𝑌 ‘ 𝑖 ) ,  0 ) ) ,   1  ,   0  ) )  =  ( 𝐺  Σg  ( 𝑘  ∈  ( 𝑥  ∪  { 𝑧 } )  ↦  ( ( 𝑌 ‘ 𝑘 )  ↑  ( 𝑉 ‘ 𝑘 ) ) ) ) ) ) ) | 
						
							| 86 | 85 | imbi2d | ⊢ ( 𝑤  =  ( 𝑥  ∪  { 𝑧 } )  →  ( ( 𝜑  →  ( 𝑤  ⊆  𝐼  →  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  ( 𝑖  ∈  𝐼  ↦  if ( 𝑖  ∈  𝑤 ,  ( 𝑌 ‘ 𝑖 ) ,  0 ) ) ,   1  ,   0  ) )  =  ( 𝐺  Σg  ( 𝑘  ∈  𝑤  ↦  ( ( 𝑌 ‘ 𝑘 )  ↑  ( 𝑉 ‘ 𝑘 ) ) ) ) ) )  ↔  ( 𝜑  →  ( ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐼  →  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  ( 𝑖  ∈  𝐼  ↦  if ( 𝑖  ∈  ( 𝑥  ∪  { 𝑧 } ) ,  ( 𝑌 ‘ 𝑖 ) ,  0 ) ) ,   1  ,   0  ) )  =  ( 𝐺  Σg  ( 𝑘  ∈  ( 𝑥  ∪  { 𝑧 } )  ↦  ( ( 𝑌 ‘ 𝑘 )  ↑  ( 𝑉 ‘ 𝑘 ) ) ) ) ) ) ) ) | 
						
							| 87 |  | sseq1 | ⊢ ( 𝑤  =  ( ◡ 𝑌  “  ℕ )  →  ( 𝑤  ⊆  𝐼  ↔  ( ◡ 𝑌  “  ℕ )  ⊆  𝐼 ) ) | 
						
							| 88 |  | eleq2 | ⊢ ( 𝑤  =  ( ◡ 𝑌  “  ℕ )  →  ( 𝑖  ∈  𝑤  ↔  𝑖  ∈  ( ◡ 𝑌  “  ℕ ) ) ) | 
						
							| 89 | 88 | ifbid | ⊢ ( 𝑤  =  ( ◡ 𝑌  “  ℕ )  →  if ( 𝑖  ∈  𝑤 ,  ( 𝑌 ‘ 𝑖 ) ,  0 )  =  if ( 𝑖  ∈  ( ◡ 𝑌  “  ℕ ) ,  ( 𝑌 ‘ 𝑖 ) ,  0 ) ) | 
						
							| 90 | 89 | mpteq2dv | ⊢ ( 𝑤  =  ( ◡ 𝑌  “  ℕ )  →  ( 𝑖  ∈  𝐼  ↦  if ( 𝑖  ∈  𝑤 ,  ( 𝑌 ‘ 𝑖 ) ,  0 ) )  =  ( 𝑖  ∈  𝐼  ↦  if ( 𝑖  ∈  ( ◡ 𝑌  “  ℕ ) ,  ( 𝑌 ‘ 𝑖 ) ,  0 ) ) ) | 
						
							| 91 | 90 | eqeq2d | ⊢ ( 𝑤  =  ( ◡ 𝑌  “  ℕ )  →  ( 𝑦  =  ( 𝑖  ∈  𝐼  ↦  if ( 𝑖  ∈  𝑤 ,  ( 𝑌 ‘ 𝑖 ) ,  0 ) )  ↔  𝑦  =  ( 𝑖  ∈  𝐼  ↦  if ( 𝑖  ∈  ( ◡ 𝑌  “  ℕ ) ,  ( 𝑌 ‘ 𝑖 ) ,  0 ) ) ) ) | 
						
							| 92 | 91 | ifbid | ⊢ ( 𝑤  =  ( ◡ 𝑌  “  ℕ )  →  if ( 𝑦  =  ( 𝑖  ∈  𝐼  ↦  if ( 𝑖  ∈  𝑤 ,  ( 𝑌 ‘ 𝑖 ) ,  0 ) ) ,   1  ,   0  )  =  if ( 𝑦  =  ( 𝑖  ∈  𝐼  ↦  if ( 𝑖  ∈  ( ◡ 𝑌  “  ℕ ) ,  ( 𝑌 ‘ 𝑖 ) ,  0 ) ) ,   1  ,   0  ) ) | 
						
							| 93 | 92 | mpteq2dv | ⊢ ( 𝑤  =  ( ◡ 𝑌  “  ℕ )  →  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  ( 𝑖  ∈  𝐼  ↦  if ( 𝑖  ∈  𝑤 ,  ( 𝑌 ‘ 𝑖 ) ,  0 ) ) ,   1  ,   0  ) )  =  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  ( 𝑖  ∈  𝐼  ↦  if ( 𝑖  ∈  ( ◡ 𝑌  “  ℕ ) ,  ( 𝑌 ‘ 𝑖 ) ,  0 ) ) ,   1  ,   0  ) ) ) | 
						
							| 94 |  | mpteq1 | ⊢ ( 𝑤  =  ( ◡ 𝑌  “  ℕ )  →  ( 𝑘  ∈  𝑤  ↦  ( ( 𝑌 ‘ 𝑘 )  ↑  ( 𝑉 ‘ 𝑘 ) ) )  =  ( 𝑘  ∈  ( ◡ 𝑌  “  ℕ )  ↦  ( ( 𝑌 ‘ 𝑘 )  ↑  ( 𝑉 ‘ 𝑘 ) ) ) ) | 
						
							| 95 | 94 | oveq2d | ⊢ ( 𝑤  =  ( ◡ 𝑌  “  ℕ )  →  ( 𝐺  Σg  ( 𝑘  ∈  𝑤  ↦  ( ( 𝑌 ‘ 𝑘 )  ↑  ( 𝑉 ‘ 𝑘 ) ) ) )  =  ( 𝐺  Σg  ( 𝑘  ∈  ( ◡ 𝑌  “  ℕ )  ↦  ( ( 𝑌 ‘ 𝑘 )  ↑  ( 𝑉 ‘ 𝑘 ) ) ) ) ) | 
						
							| 96 | 93 95 | eqeq12d | ⊢ ( 𝑤  =  ( ◡ 𝑌  “  ℕ )  →  ( ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  ( 𝑖  ∈  𝐼  ↦  if ( 𝑖  ∈  𝑤 ,  ( 𝑌 ‘ 𝑖 ) ,  0 ) ) ,   1  ,   0  ) )  =  ( 𝐺  Σg  ( 𝑘  ∈  𝑤  ↦  ( ( 𝑌 ‘ 𝑘 )  ↑  ( 𝑉 ‘ 𝑘 ) ) ) )  ↔  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  ( 𝑖  ∈  𝐼  ↦  if ( 𝑖  ∈  ( ◡ 𝑌  “  ℕ ) ,  ( 𝑌 ‘ 𝑖 ) ,  0 ) ) ,   1  ,   0  ) )  =  ( 𝐺  Σg  ( 𝑘  ∈  ( ◡ 𝑌  “  ℕ )  ↦  ( ( 𝑌 ‘ 𝑘 )  ↑  ( 𝑉 ‘ 𝑘 ) ) ) ) ) ) | 
						
							| 97 | 87 96 | imbi12d | ⊢ ( 𝑤  =  ( ◡ 𝑌  “  ℕ )  →  ( ( 𝑤  ⊆  𝐼  →  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  ( 𝑖  ∈  𝐼  ↦  if ( 𝑖  ∈  𝑤 ,  ( 𝑌 ‘ 𝑖 ) ,  0 ) ) ,   1  ,   0  ) )  =  ( 𝐺  Σg  ( 𝑘  ∈  𝑤  ↦  ( ( 𝑌 ‘ 𝑘 )  ↑  ( 𝑉 ‘ 𝑘 ) ) ) ) )  ↔  ( ( ◡ 𝑌  “  ℕ )  ⊆  𝐼  →  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  ( 𝑖  ∈  𝐼  ↦  if ( 𝑖  ∈  ( ◡ 𝑌  “  ℕ ) ,  ( 𝑌 ‘ 𝑖 ) ,  0 ) ) ,   1  ,   0  ) )  =  ( 𝐺  Σg  ( 𝑘  ∈  ( ◡ 𝑌  “  ℕ )  ↦  ( ( 𝑌 ‘ 𝑘 )  ↑  ( 𝑉 ‘ 𝑘 ) ) ) ) ) ) ) | 
						
							| 98 | 97 | imbi2d | ⊢ ( 𝑤  =  ( ◡ 𝑌  “  ℕ )  →  ( ( 𝜑  →  ( 𝑤  ⊆  𝐼  →  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  ( 𝑖  ∈  𝐼  ↦  if ( 𝑖  ∈  𝑤 ,  ( 𝑌 ‘ 𝑖 ) ,  0 ) ) ,   1  ,   0  ) )  =  ( 𝐺  Σg  ( 𝑘  ∈  𝑤  ↦  ( ( 𝑌 ‘ 𝑘 )  ↑  ( 𝑉 ‘ 𝑘 ) ) ) ) ) )  ↔  ( 𝜑  →  ( ( ◡ 𝑌  “  ℕ )  ⊆  𝐼  →  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  ( 𝑖  ∈  𝐼  ↦  if ( 𝑖  ∈  ( ◡ 𝑌  “  ℕ ) ,  ( 𝑌 ‘ 𝑖 ) ,  0 ) ) ,   1  ,   0  ) )  =  ( 𝐺  Σg  ( 𝑘  ∈  ( ◡ 𝑌  “  ℕ )  ↦  ( ( 𝑌 ‘ 𝑘 )  ↑  ( 𝑉 ‘ 𝑘 ) ) ) ) ) ) ) ) | 
						
							| 99 | 1 2 3 4 56 5 9 | mpl1 | ⊢ ( 𝜑  →  ( 1r ‘ 𝑃 )  =  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  ( 𝐼  ×  { 0 } ) ,   1  ,   0  ) ) ) | 
						
							| 100 | 99 56 | eqtr3di | ⊢ ( 𝜑  →  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  ( 𝐼  ×  { 0 } ) ,   1  ,   0  ) )  =  ( 1r ‘ 𝑃 ) ) | 
						
							| 101 | 100 | a1d | ⊢ ( 𝜑  →  ( ∅  ⊆  𝐼  →  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  ( 𝐼  ×  { 0 } ) ,   1  ,   0  ) )  =  ( 1r ‘ 𝑃 ) ) ) | 
						
							| 102 |  | ssun1 | ⊢ 𝑥  ⊆  ( 𝑥  ∪  { 𝑧 } ) | 
						
							| 103 |  | sstr2 | ⊢ ( 𝑥  ⊆  ( 𝑥  ∪  { 𝑧 } )  →  ( ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐼  →  𝑥  ⊆  𝐼 ) ) | 
						
							| 104 | 102 103 | ax-mp | ⊢ ( ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐼  →  𝑥  ⊆  𝐼 ) | 
						
							| 105 | 104 | imim1i | ⊢ ( ( 𝑥  ⊆  𝐼  →  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  ( 𝑖  ∈  𝐼  ↦  if ( 𝑖  ∈  𝑥 ,  ( 𝑌 ‘ 𝑖 ) ,  0 ) ) ,   1  ,   0  ) )  =  ( 𝐺  Σg  ( 𝑘  ∈  𝑥  ↦  ( ( 𝑌 ‘ 𝑘 )  ↑  ( 𝑉 ‘ 𝑘 ) ) ) ) )  →  ( ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐼  →  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  ( 𝑖  ∈  𝐼  ↦  if ( 𝑖  ∈  𝑥 ,  ( 𝑌 ‘ 𝑖 ) ,  0 ) ) ,   1  ,   0  ) )  =  ( 𝐺  Σg  ( 𝑘  ∈  𝑥  ↦  ( ( 𝑌 ‘ 𝑘 )  ↑  ( 𝑉 ‘ 𝑘 ) ) ) ) ) ) | 
						
							| 106 |  | oveq1 | ⊢ ( ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  ( 𝑖  ∈  𝐼  ↦  if ( 𝑖  ∈  𝑥 ,  ( 𝑌 ‘ 𝑖 ) ,  0 ) ) ,   1  ,   0  ) )  =  ( 𝐺  Σg  ( 𝑘  ∈  𝑥  ↦  ( ( 𝑌 ‘ 𝑘 )  ↑  ( 𝑉 ‘ 𝑘 ) ) ) )  →  ( ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  ( 𝑖  ∈  𝐼  ↦  if ( 𝑖  ∈  𝑥 ,  ( 𝑌 ‘ 𝑖 ) ,  0 ) ) ,   1  ,   0  ) ) ( .r ‘ 𝑃 ) ( ( 𝑌 ‘ 𝑧 )  ↑  ( 𝑉 ‘ 𝑧 ) ) )  =  ( ( 𝐺  Σg  ( 𝑘  ∈  𝑥  ↦  ( ( 𝑌 ‘ 𝑘 )  ↑  ( 𝑉 ‘ 𝑘 ) ) ) ) ( .r ‘ 𝑃 ) ( ( 𝑌 ‘ 𝑧 )  ↑  ( 𝑉 ‘ 𝑧 ) ) ) ) | 
						
							| 107 |  | eqid | ⊢ ( Base ‘ 𝑃 )  =  ( Base ‘ 𝑃 ) | 
						
							| 108 | 5 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐼 ) )  →  𝐼  ∈  𝑊 ) | 
						
							| 109 | 9 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐼 ) )  →  𝑅  ∈  Ring ) | 
						
							| 110 | 15 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐼 ) )  →  𝑌 : 𝐼 ⟶ ℕ0 ) | 
						
							| 111 | 110 | ffvelcdmda | ⊢ ( ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐼 ) )  ∧  𝑖  ∈  𝐼 )  →  ( 𝑌 ‘ 𝑖 )  ∈  ℕ0 ) | 
						
							| 112 |  | 0nn0 | ⊢ 0  ∈  ℕ0 | 
						
							| 113 |  | ifcl | ⊢ ( ( ( 𝑌 ‘ 𝑖 )  ∈  ℕ0  ∧  0  ∈  ℕ0 )  →  if ( 𝑖  ∈  𝑥 ,  ( 𝑌 ‘ 𝑖 ) ,  0 )  ∈  ℕ0 ) | 
						
							| 114 | 111 112 113 | sylancl | ⊢ ( ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐼 ) )  ∧  𝑖  ∈  𝐼 )  →  if ( 𝑖  ∈  𝑥 ,  ( 𝑌 ‘ 𝑖 ) ,  0 )  ∈  ℕ0 ) | 
						
							| 115 | 114 | fmpttd | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐼 ) )  →  ( 𝑖  ∈  𝐼  ↦  if ( 𝑖  ∈  𝑥 ,  ( 𝑌 ‘ 𝑖 ) ,  0 ) ) : 𝐼 ⟶ ℕ0 ) | 
						
							| 116 |  | fcdmnn0supp | ⊢ ( ( 𝐼  ∈  𝑊  ∧  ( 𝑖  ∈  𝐼  ↦  if ( 𝑖  ∈  𝑥 ,  ( 𝑌 ‘ 𝑖 ) ,  0 ) ) : 𝐼 ⟶ ℕ0 )  →  ( ( 𝑖  ∈  𝐼  ↦  if ( 𝑖  ∈  𝑥 ,  ( 𝑌 ‘ 𝑖 ) ,  0 ) )  supp  0 )  =  ( ◡ ( 𝑖  ∈  𝐼  ↦  if ( 𝑖  ∈  𝑥 ,  ( 𝑌 ‘ 𝑖 ) ,  0 ) )  “  ℕ ) ) | 
						
							| 117 | 108 115 116 | syl2anc | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐼 ) )  →  ( ( 𝑖  ∈  𝐼  ↦  if ( 𝑖  ∈  𝑥 ,  ( 𝑌 ‘ 𝑖 ) ,  0 ) )  supp  0 )  =  ( ◡ ( 𝑖  ∈  𝐼  ↦  if ( 𝑖  ∈  𝑥 ,  ( 𝑌 ‘ 𝑖 ) ,  0 ) )  “  ℕ ) ) | 
						
							| 118 |  | simprll | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐼 ) )  →  𝑥  ∈  Fin ) | 
						
							| 119 |  | eldifn | ⊢ ( 𝑖  ∈  ( 𝐼  ∖  𝑥 )  →  ¬  𝑖  ∈  𝑥 ) | 
						
							| 120 | 119 | adantl | ⊢ ( ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐼 ) )  ∧  𝑖  ∈  ( 𝐼  ∖  𝑥 ) )  →  ¬  𝑖  ∈  𝑥 ) | 
						
							| 121 | 120 | iffalsed | ⊢ ( ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐼 ) )  ∧  𝑖  ∈  ( 𝐼  ∖  𝑥 ) )  →  if ( 𝑖  ∈  𝑥 ,  ( 𝑌 ‘ 𝑖 ) ,  0 )  =  0 ) | 
						
							| 122 | 121 108 | suppss2 | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐼 ) )  →  ( ( 𝑖  ∈  𝐼  ↦  if ( 𝑖  ∈  𝑥 ,  ( 𝑌 ‘ 𝑖 ) ,  0 ) )  supp  0 )  ⊆  𝑥 ) | 
						
							| 123 | 118 122 | ssfid | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐼 ) )  →  ( ( 𝑖  ∈  𝐼  ↦  if ( 𝑖  ∈  𝑥 ,  ( 𝑌 ‘ 𝑖 ) ,  0 ) )  supp  0 )  ∈  Fin ) | 
						
							| 124 | 117 123 | eqeltrrd | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐼 ) )  →  ( ◡ ( 𝑖  ∈  𝐼  ↦  if ( 𝑖  ∈  𝑥 ,  ( 𝑌 ‘ 𝑖 ) ,  0 ) )  “  ℕ )  ∈  Fin ) | 
						
							| 125 | 2 | psrbag | ⊢ ( 𝐼  ∈  𝑊  →  ( ( 𝑖  ∈  𝐼  ↦  if ( 𝑖  ∈  𝑥 ,  ( 𝑌 ‘ 𝑖 ) ,  0 ) )  ∈  𝐷  ↔  ( ( 𝑖  ∈  𝐼  ↦  if ( 𝑖  ∈  𝑥 ,  ( 𝑌 ‘ 𝑖 ) ,  0 ) ) : 𝐼 ⟶ ℕ0  ∧  ( ◡ ( 𝑖  ∈  𝐼  ↦  if ( 𝑖  ∈  𝑥 ,  ( 𝑌 ‘ 𝑖 ) ,  0 ) )  “  ℕ )  ∈  Fin ) ) ) | 
						
							| 126 | 108 125 | syl | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐼 ) )  →  ( ( 𝑖  ∈  𝐼  ↦  if ( 𝑖  ∈  𝑥 ,  ( 𝑌 ‘ 𝑖 ) ,  0 ) )  ∈  𝐷  ↔  ( ( 𝑖  ∈  𝐼  ↦  if ( 𝑖  ∈  𝑥 ,  ( 𝑌 ‘ 𝑖 ) ,  0 ) ) : 𝐼 ⟶ ℕ0  ∧  ( ◡ ( 𝑖  ∈  𝐼  ↦  if ( 𝑖  ∈  𝑥 ,  ( 𝑌 ‘ 𝑖 ) ,  0 ) )  “  ℕ )  ∈  Fin ) ) ) | 
						
							| 127 | 115 124 126 | mpbir2and | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐼 ) )  →  ( 𝑖  ∈  𝐼  ↦  if ( 𝑖  ∈  𝑥 ,  ( 𝑌 ‘ 𝑖 ) ,  0 ) )  ∈  𝐷 ) | 
						
							| 128 |  | eqid | ⊢ ( .r ‘ 𝑃 )  =  ( .r ‘ 𝑃 ) | 
						
							| 129 |  | ssun2 | ⊢ { 𝑧 }  ⊆  ( 𝑥  ∪  { 𝑧 } ) | 
						
							| 130 |  | simprr | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐼 ) )  →  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐼 ) | 
						
							| 131 | 129 130 | sstrid | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐼 ) )  →  { 𝑧 }  ⊆  𝐼 ) | 
						
							| 132 |  | vex | ⊢ 𝑧  ∈  V | 
						
							| 133 | 132 | snss | ⊢ ( 𝑧  ∈  𝐼  ↔  { 𝑧 }  ⊆  𝐼 ) | 
						
							| 134 | 131 133 | sylibr | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐼 ) )  →  𝑧  ∈  𝐼 ) | 
						
							| 135 | 110 134 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐼 ) )  →  ( 𝑌 ‘ 𝑧 )  ∈  ℕ0 ) | 
						
							| 136 | 2 | snifpsrbag | ⊢ ( ( 𝐼  ∈  𝑊  ∧  ( 𝑌 ‘ 𝑧 )  ∈  ℕ0 )  →  ( 𝑖  ∈  𝐼  ↦  if ( 𝑖  =  𝑧 ,  ( 𝑌 ‘ 𝑧 ) ,  0 ) )  ∈  𝐷 ) | 
						
							| 137 | 108 135 136 | syl2anc | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐼 ) )  →  ( 𝑖  ∈  𝐼  ↦  if ( 𝑖  =  𝑧 ,  ( 𝑌 ‘ 𝑧 ) ,  0 ) )  ∈  𝐷 ) | 
						
							| 138 | 1 107 3 4 2 108 109 127 128 137 | mplmonmul | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐼 ) )  →  ( ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  ( 𝑖  ∈  𝐼  ↦  if ( 𝑖  ∈  𝑥 ,  ( 𝑌 ‘ 𝑖 ) ,  0 ) ) ,   1  ,   0  ) ) ( .r ‘ 𝑃 ) ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  ( 𝑖  ∈  𝐼  ↦  if ( 𝑖  =  𝑧 ,  ( 𝑌 ‘ 𝑧 ) ,  0 ) ) ,   1  ,   0  ) ) )  =  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  ( ( 𝑖  ∈  𝐼  ↦  if ( 𝑖  ∈  𝑥 ,  ( 𝑌 ‘ 𝑖 ) ,  0 ) )  ∘f   +  ( 𝑖  ∈  𝐼  ↦  if ( 𝑖  =  𝑧 ,  ( 𝑌 ‘ 𝑧 ) ,  0 ) ) ) ,   1  ,   0  ) ) ) | 
						
							| 139 | 1 2 3 4 108 6 7 8 109 134 135 | mplcoe3 | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐼 ) )  →  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  ( 𝑖  ∈  𝐼  ↦  if ( 𝑖  =  𝑧 ,  ( 𝑌 ‘ 𝑧 ) ,  0 ) ) ,   1  ,   0  ) )  =  ( ( 𝑌 ‘ 𝑧 )  ↑  ( 𝑉 ‘ 𝑧 ) ) ) | 
						
							| 140 | 139 | oveq2d | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐼 ) )  →  ( ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  ( 𝑖  ∈  𝐼  ↦  if ( 𝑖  ∈  𝑥 ,  ( 𝑌 ‘ 𝑖 ) ,  0 ) ) ,   1  ,   0  ) ) ( .r ‘ 𝑃 ) ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  ( 𝑖  ∈  𝐼  ↦  if ( 𝑖  =  𝑧 ,  ( 𝑌 ‘ 𝑧 ) ,  0 ) ) ,   1  ,   0  ) ) )  =  ( ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  ( 𝑖  ∈  𝐼  ↦  if ( 𝑖  ∈  𝑥 ,  ( 𝑌 ‘ 𝑖 ) ,  0 ) ) ,   1  ,   0  ) ) ( .r ‘ 𝑃 ) ( ( 𝑌 ‘ 𝑧 )  ↑  ( 𝑉 ‘ 𝑧 ) ) ) ) | 
						
							| 141 | 135 | adantr | ⊢ ( ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐼 ) )  ∧  𝑖  ∈  𝐼 )  →  ( 𝑌 ‘ 𝑧 )  ∈  ℕ0 ) | 
						
							| 142 |  | ifcl | ⊢ ( ( ( 𝑌 ‘ 𝑧 )  ∈  ℕ0  ∧  0  ∈  ℕ0 )  →  if ( 𝑖  =  𝑧 ,  ( 𝑌 ‘ 𝑧 ) ,  0 )  ∈  ℕ0 ) | 
						
							| 143 | 141 112 142 | sylancl | ⊢ ( ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐼 ) )  ∧  𝑖  ∈  𝐼 )  →  if ( 𝑖  =  𝑧 ,  ( 𝑌 ‘ 𝑧 ) ,  0 )  ∈  ℕ0 ) | 
						
							| 144 |  | eqidd | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐼 ) )  →  ( 𝑖  ∈  𝐼  ↦  if ( 𝑖  ∈  𝑥 ,  ( 𝑌 ‘ 𝑖 ) ,  0 ) )  =  ( 𝑖  ∈  𝐼  ↦  if ( 𝑖  ∈  𝑥 ,  ( 𝑌 ‘ 𝑖 ) ,  0 ) ) ) | 
						
							| 145 |  | eqidd | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐼 ) )  →  ( 𝑖  ∈  𝐼  ↦  if ( 𝑖  =  𝑧 ,  ( 𝑌 ‘ 𝑧 ) ,  0 ) )  =  ( 𝑖  ∈  𝐼  ↦  if ( 𝑖  =  𝑧 ,  ( 𝑌 ‘ 𝑧 ) ,  0 ) ) ) | 
						
							| 146 | 108 114 143 144 145 | offval2 | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐼 ) )  →  ( ( 𝑖  ∈  𝐼  ↦  if ( 𝑖  ∈  𝑥 ,  ( 𝑌 ‘ 𝑖 ) ,  0 ) )  ∘f   +  ( 𝑖  ∈  𝐼  ↦  if ( 𝑖  =  𝑧 ,  ( 𝑌 ‘ 𝑧 ) ,  0 ) ) )  =  ( 𝑖  ∈  𝐼  ↦  ( if ( 𝑖  ∈  𝑥 ,  ( 𝑌 ‘ 𝑖 ) ,  0 )  +  if ( 𝑖  =  𝑧 ,  ( 𝑌 ‘ 𝑧 ) ,  0 ) ) ) ) | 
						
							| 147 | 111 | adantr | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐼 ) )  ∧  𝑖  ∈  𝐼 )  ∧  𝑖  ∈  { 𝑧 } )  →  ( 𝑌 ‘ 𝑖 )  ∈  ℕ0 ) | 
						
							| 148 | 147 | nn0cnd | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐼 ) )  ∧  𝑖  ∈  𝐼 )  ∧  𝑖  ∈  { 𝑧 } )  →  ( 𝑌 ‘ 𝑖 )  ∈  ℂ ) | 
						
							| 149 | 148 | addlidd | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐼 ) )  ∧  𝑖  ∈  𝐼 )  ∧  𝑖  ∈  { 𝑧 } )  →  ( 0  +  ( 𝑌 ‘ 𝑖 ) )  =  ( 𝑌 ‘ 𝑖 ) ) | 
						
							| 150 |  | elsni | ⊢ ( 𝑖  ∈  { 𝑧 }  →  𝑖  =  𝑧 ) | 
						
							| 151 | 150 | adantl | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐼 ) )  ∧  𝑖  ∈  𝐼 )  ∧  𝑖  ∈  { 𝑧 } )  →  𝑖  =  𝑧 ) | 
						
							| 152 |  | simprlr | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐼 ) )  →  ¬  𝑧  ∈  𝑥 ) | 
						
							| 153 | 152 | ad2antrr | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐼 ) )  ∧  𝑖  ∈  𝐼 )  ∧  𝑖  ∈  { 𝑧 } )  →  ¬  𝑧  ∈  𝑥 ) | 
						
							| 154 | 151 153 | eqneltrd | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐼 ) )  ∧  𝑖  ∈  𝐼 )  ∧  𝑖  ∈  { 𝑧 } )  →  ¬  𝑖  ∈  𝑥 ) | 
						
							| 155 | 154 | iffalsed | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐼 ) )  ∧  𝑖  ∈  𝐼 )  ∧  𝑖  ∈  { 𝑧 } )  →  if ( 𝑖  ∈  𝑥 ,  ( 𝑌 ‘ 𝑖 ) ,  0 )  =  0 ) | 
						
							| 156 | 151 | iftrued | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐼 ) )  ∧  𝑖  ∈  𝐼 )  ∧  𝑖  ∈  { 𝑧 } )  →  if ( 𝑖  =  𝑧 ,  ( 𝑌 ‘ 𝑧 ) ,  0 )  =  ( 𝑌 ‘ 𝑧 ) ) | 
						
							| 157 | 151 | fveq2d | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐼 ) )  ∧  𝑖  ∈  𝐼 )  ∧  𝑖  ∈  { 𝑧 } )  →  ( 𝑌 ‘ 𝑖 )  =  ( 𝑌 ‘ 𝑧 ) ) | 
						
							| 158 | 156 157 | eqtr4d | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐼 ) )  ∧  𝑖  ∈  𝐼 )  ∧  𝑖  ∈  { 𝑧 } )  →  if ( 𝑖  =  𝑧 ,  ( 𝑌 ‘ 𝑧 ) ,  0 )  =  ( 𝑌 ‘ 𝑖 ) ) | 
						
							| 159 | 155 158 | oveq12d | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐼 ) )  ∧  𝑖  ∈  𝐼 )  ∧  𝑖  ∈  { 𝑧 } )  →  ( if ( 𝑖  ∈  𝑥 ,  ( 𝑌 ‘ 𝑖 ) ,  0 )  +  if ( 𝑖  =  𝑧 ,  ( 𝑌 ‘ 𝑧 ) ,  0 ) )  =  ( 0  +  ( 𝑌 ‘ 𝑖 ) ) ) | 
						
							| 160 |  | simpr | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐼 ) )  ∧  𝑖  ∈  𝐼 )  ∧  𝑖  ∈  { 𝑧 } )  →  𝑖  ∈  { 𝑧 } ) | 
						
							| 161 | 129 160 | sselid | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐼 ) )  ∧  𝑖  ∈  𝐼 )  ∧  𝑖  ∈  { 𝑧 } )  →  𝑖  ∈  ( 𝑥  ∪  { 𝑧 } ) ) | 
						
							| 162 | 161 | iftrued | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐼 ) )  ∧  𝑖  ∈  𝐼 )  ∧  𝑖  ∈  { 𝑧 } )  →  if ( 𝑖  ∈  ( 𝑥  ∪  { 𝑧 } ) ,  ( 𝑌 ‘ 𝑖 ) ,  0 )  =  ( 𝑌 ‘ 𝑖 ) ) | 
						
							| 163 | 149 159 162 | 3eqtr4d | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐼 ) )  ∧  𝑖  ∈  𝐼 )  ∧  𝑖  ∈  { 𝑧 } )  →  ( if ( 𝑖  ∈  𝑥 ,  ( 𝑌 ‘ 𝑖 ) ,  0 )  +  if ( 𝑖  =  𝑧 ,  ( 𝑌 ‘ 𝑧 ) ,  0 ) )  =  if ( 𝑖  ∈  ( 𝑥  ∪  { 𝑧 } ) ,  ( 𝑌 ‘ 𝑖 ) ,  0 ) ) | 
						
							| 164 | 114 | adantr | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐼 ) )  ∧  𝑖  ∈  𝐼 )  ∧  ¬  𝑖  ∈  { 𝑧 } )  →  if ( 𝑖  ∈  𝑥 ,  ( 𝑌 ‘ 𝑖 ) ,  0 )  ∈  ℕ0 ) | 
						
							| 165 | 164 | nn0cnd | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐼 ) )  ∧  𝑖  ∈  𝐼 )  ∧  ¬  𝑖  ∈  { 𝑧 } )  →  if ( 𝑖  ∈  𝑥 ,  ( 𝑌 ‘ 𝑖 ) ,  0 )  ∈  ℂ ) | 
						
							| 166 | 165 | addridd | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐼 ) )  ∧  𝑖  ∈  𝐼 )  ∧  ¬  𝑖  ∈  { 𝑧 } )  →  ( if ( 𝑖  ∈  𝑥 ,  ( 𝑌 ‘ 𝑖 ) ,  0 )  +  0 )  =  if ( 𝑖  ∈  𝑥 ,  ( 𝑌 ‘ 𝑖 ) ,  0 ) ) | 
						
							| 167 |  | simpr | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐼 ) )  ∧  𝑖  ∈  𝐼 )  ∧  ¬  𝑖  ∈  { 𝑧 } )  →  ¬  𝑖  ∈  { 𝑧 } ) | 
						
							| 168 |  | velsn | ⊢ ( 𝑖  ∈  { 𝑧 }  ↔  𝑖  =  𝑧 ) | 
						
							| 169 | 167 168 | sylnib | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐼 ) )  ∧  𝑖  ∈  𝐼 )  ∧  ¬  𝑖  ∈  { 𝑧 } )  →  ¬  𝑖  =  𝑧 ) | 
						
							| 170 | 169 | iffalsed | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐼 ) )  ∧  𝑖  ∈  𝐼 )  ∧  ¬  𝑖  ∈  { 𝑧 } )  →  if ( 𝑖  =  𝑧 ,  ( 𝑌 ‘ 𝑧 ) ,  0 )  =  0 ) | 
						
							| 171 | 170 | oveq2d | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐼 ) )  ∧  𝑖  ∈  𝐼 )  ∧  ¬  𝑖  ∈  { 𝑧 } )  →  ( if ( 𝑖  ∈  𝑥 ,  ( 𝑌 ‘ 𝑖 ) ,  0 )  +  if ( 𝑖  =  𝑧 ,  ( 𝑌 ‘ 𝑧 ) ,  0 ) )  =  ( if ( 𝑖  ∈  𝑥 ,  ( 𝑌 ‘ 𝑖 ) ,  0 )  +  0 ) ) | 
						
							| 172 |  | elun | ⊢ ( 𝑖  ∈  ( 𝑥  ∪  { 𝑧 } )  ↔  ( 𝑖  ∈  𝑥  ∨  𝑖  ∈  { 𝑧 } ) ) | 
						
							| 173 |  | orcom | ⊢ ( ( 𝑖  ∈  𝑥  ∨  𝑖  ∈  { 𝑧 } )  ↔  ( 𝑖  ∈  { 𝑧 }  ∨  𝑖  ∈  𝑥 ) ) | 
						
							| 174 | 172 173 | bitri | ⊢ ( 𝑖  ∈  ( 𝑥  ∪  { 𝑧 } )  ↔  ( 𝑖  ∈  { 𝑧 }  ∨  𝑖  ∈  𝑥 ) ) | 
						
							| 175 |  | biorf | ⊢ ( ¬  𝑖  ∈  { 𝑧 }  →  ( 𝑖  ∈  𝑥  ↔  ( 𝑖  ∈  { 𝑧 }  ∨  𝑖  ∈  𝑥 ) ) ) | 
						
							| 176 | 174 175 | bitr4id | ⊢ ( ¬  𝑖  ∈  { 𝑧 }  →  ( 𝑖  ∈  ( 𝑥  ∪  { 𝑧 } )  ↔  𝑖  ∈  𝑥 ) ) | 
						
							| 177 | 176 | adantl | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐼 ) )  ∧  𝑖  ∈  𝐼 )  ∧  ¬  𝑖  ∈  { 𝑧 } )  →  ( 𝑖  ∈  ( 𝑥  ∪  { 𝑧 } )  ↔  𝑖  ∈  𝑥 ) ) | 
						
							| 178 | 177 | ifbid | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐼 ) )  ∧  𝑖  ∈  𝐼 )  ∧  ¬  𝑖  ∈  { 𝑧 } )  →  if ( 𝑖  ∈  ( 𝑥  ∪  { 𝑧 } ) ,  ( 𝑌 ‘ 𝑖 ) ,  0 )  =  if ( 𝑖  ∈  𝑥 ,  ( 𝑌 ‘ 𝑖 ) ,  0 ) ) | 
						
							| 179 | 166 171 178 | 3eqtr4d | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐼 ) )  ∧  𝑖  ∈  𝐼 )  ∧  ¬  𝑖  ∈  { 𝑧 } )  →  ( if ( 𝑖  ∈  𝑥 ,  ( 𝑌 ‘ 𝑖 ) ,  0 )  +  if ( 𝑖  =  𝑧 ,  ( 𝑌 ‘ 𝑧 ) ,  0 ) )  =  if ( 𝑖  ∈  ( 𝑥  ∪  { 𝑧 } ) ,  ( 𝑌 ‘ 𝑖 ) ,  0 ) ) | 
						
							| 180 | 163 179 | pm2.61dan | ⊢ ( ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐼 ) )  ∧  𝑖  ∈  𝐼 )  →  ( if ( 𝑖  ∈  𝑥 ,  ( 𝑌 ‘ 𝑖 ) ,  0 )  +  if ( 𝑖  =  𝑧 ,  ( 𝑌 ‘ 𝑧 ) ,  0 ) )  =  if ( 𝑖  ∈  ( 𝑥  ∪  { 𝑧 } ) ,  ( 𝑌 ‘ 𝑖 ) ,  0 ) ) | 
						
							| 181 | 180 | mpteq2dva | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐼 ) )  →  ( 𝑖  ∈  𝐼  ↦  ( if ( 𝑖  ∈  𝑥 ,  ( 𝑌 ‘ 𝑖 ) ,  0 )  +  if ( 𝑖  =  𝑧 ,  ( 𝑌 ‘ 𝑧 ) ,  0 ) ) )  =  ( 𝑖  ∈  𝐼  ↦  if ( 𝑖  ∈  ( 𝑥  ∪  { 𝑧 } ) ,  ( 𝑌 ‘ 𝑖 ) ,  0 ) ) ) | 
						
							| 182 | 146 181 | eqtrd | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐼 ) )  →  ( ( 𝑖  ∈  𝐼  ↦  if ( 𝑖  ∈  𝑥 ,  ( 𝑌 ‘ 𝑖 ) ,  0 ) )  ∘f   +  ( 𝑖  ∈  𝐼  ↦  if ( 𝑖  =  𝑧 ,  ( 𝑌 ‘ 𝑧 ) ,  0 ) ) )  =  ( 𝑖  ∈  𝐼  ↦  if ( 𝑖  ∈  ( 𝑥  ∪  { 𝑧 } ) ,  ( 𝑌 ‘ 𝑖 ) ,  0 ) ) ) | 
						
							| 183 | 182 | eqeq2d | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐼 ) )  →  ( 𝑦  =  ( ( 𝑖  ∈  𝐼  ↦  if ( 𝑖  ∈  𝑥 ,  ( 𝑌 ‘ 𝑖 ) ,  0 ) )  ∘f   +  ( 𝑖  ∈  𝐼  ↦  if ( 𝑖  =  𝑧 ,  ( 𝑌 ‘ 𝑧 ) ,  0 ) ) )  ↔  𝑦  =  ( 𝑖  ∈  𝐼  ↦  if ( 𝑖  ∈  ( 𝑥  ∪  { 𝑧 } ) ,  ( 𝑌 ‘ 𝑖 ) ,  0 ) ) ) ) | 
						
							| 184 | 183 | ifbid | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐼 ) )  →  if ( 𝑦  =  ( ( 𝑖  ∈  𝐼  ↦  if ( 𝑖  ∈  𝑥 ,  ( 𝑌 ‘ 𝑖 ) ,  0 ) )  ∘f   +  ( 𝑖  ∈  𝐼  ↦  if ( 𝑖  =  𝑧 ,  ( 𝑌 ‘ 𝑧 ) ,  0 ) ) ) ,   1  ,   0  )  =  if ( 𝑦  =  ( 𝑖  ∈  𝐼  ↦  if ( 𝑖  ∈  ( 𝑥  ∪  { 𝑧 } ) ,  ( 𝑌 ‘ 𝑖 ) ,  0 ) ) ,   1  ,   0  ) ) | 
						
							| 185 | 184 | mpteq2dv | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐼 ) )  →  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  ( ( 𝑖  ∈  𝐼  ↦  if ( 𝑖  ∈  𝑥 ,  ( 𝑌 ‘ 𝑖 ) ,  0 ) )  ∘f   +  ( 𝑖  ∈  𝐼  ↦  if ( 𝑖  =  𝑧 ,  ( 𝑌 ‘ 𝑧 ) ,  0 ) ) ) ,   1  ,   0  ) )  =  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  ( 𝑖  ∈  𝐼  ↦  if ( 𝑖  ∈  ( 𝑥  ∪  { 𝑧 } ) ,  ( 𝑌 ‘ 𝑖 ) ,  0 ) ) ,   1  ,   0  ) ) ) | 
						
							| 186 | 138 140 185 | 3eqtr3rd | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐼 ) )  →  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  ( 𝑖  ∈  𝐼  ↦  if ( 𝑖  ∈  ( 𝑥  ∪  { 𝑧 } ) ,  ( 𝑌 ‘ 𝑖 ) ,  0 ) ) ,   1  ,   0  ) )  =  ( ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  ( 𝑖  ∈  𝐼  ↦  if ( 𝑖  ∈  𝑥 ,  ( 𝑌 ‘ 𝑖 ) ,  0 ) ) ,   1  ,   0  ) ) ( .r ‘ 𝑃 ) ( ( 𝑌 ‘ 𝑧 )  ↑  ( 𝑉 ‘ 𝑧 ) ) ) ) | 
						
							| 187 | 6 107 | mgpbas | ⊢ ( Base ‘ 𝑃 )  =  ( Base ‘ 𝐺 ) | 
						
							| 188 | 6 128 | mgpplusg | ⊢ ( .r ‘ 𝑃 )  =  ( +g ‘ 𝐺 ) | 
						
							| 189 |  | eqid | ⊢ ( Cntz ‘ 𝐺 )  =  ( Cntz ‘ 𝐺 ) | 
						
							| 190 |  | eqid | ⊢ ( 𝑘  ∈  ( 𝑥  ∪  { 𝑧 } )  ↦  ( ( 𝑌 ‘ 𝑘 )  ↑  ( 𝑉 ‘ 𝑘 ) ) )  =  ( 𝑘  ∈  ( 𝑥  ∪  { 𝑧 } )  ↦  ( ( 𝑌 ‘ 𝑘 )  ↑  ( 𝑉 ‘ 𝑘 ) ) ) | 
						
							| 191 | 1 5 9 | mplringd | ⊢ ( 𝜑  →  𝑃  ∈  Ring ) | 
						
							| 192 | 6 | ringmgp | ⊢ ( 𝑃  ∈  Ring  →  𝐺  ∈  Mnd ) | 
						
							| 193 | 191 192 | syl | ⊢ ( 𝜑  →  𝐺  ∈  Mnd ) | 
						
							| 194 | 193 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐼 ) )  →  𝐺  ∈  Mnd ) | 
						
							| 195 | 10 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐼 ) )  →  𝑌  ∈  𝐷 ) | 
						
							| 196 |  | fveq2 | ⊢ ( 𝑥  =  𝑎  →  ( 𝑉 ‘ 𝑥 )  =  ( 𝑉 ‘ 𝑎 ) ) | 
						
							| 197 | 196 | oveq2d | ⊢ ( 𝑥  =  𝑎  →  ( ( 𝑉 ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑥 ) )  =  ( ( 𝑉 ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑎 ) ) ) | 
						
							| 198 | 196 | oveq1d | ⊢ ( 𝑥  =  𝑎  →  ( ( 𝑉 ‘ 𝑥 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑦 ) )  =  ( ( 𝑉 ‘ 𝑎 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑦 ) ) ) | 
						
							| 199 | 197 198 | eqeq12d | ⊢ ( 𝑥  =  𝑎  →  ( ( ( 𝑉 ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑥 ) )  =  ( ( 𝑉 ‘ 𝑥 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑦 ) )  ↔  ( ( 𝑉 ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑎 ) )  =  ( ( 𝑉 ‘ 𝑎 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑦 ) ) ) ) | 
						
							| 200 |  | fveq2 | ⊢ ( 𝑦  =  𝑏  →  ( 𝑉 ‘ 𝑦 )  =  ( 𝑉 ‘ 𝑏 ) ) | 
						
							| 201 | 200 | oveq1d | ⊢ ( 𝑦  =  𝑏  →  ( ( 𝑉 ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑎 ) )  =  ( ( 𝑉 ‘ 𝑏 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑎 ) ) ) | 
						
							| 202 | 200 | oveq2d | ⊢ ( 𝑦  =  𝑏  →  ( ( 𝑉 ‘ 𝑎 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑦 ) )  =  ( ( 𝑉 ‘ 𝑎 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑏 ) ) ) | 
						
							| 203 | 201 202 | eqeq12d | ⊢ ( 𝑦  =  𝑏  →  ( ( ( 𝑉 ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑎 ) )  =  ( ( 𝑉 ‘ 𝑎 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑦 ) )  ↔  ( ( 𝑉 ‘ 𝑏 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑎 ) )  =  ( ( 𝑉 ‘ 𝑎 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑏 ) ) ) ) | 
						
							| 204 | 199 203 | cbvral2vw | ⊢ ( ∀ 𝑥  ∈  𝐼 ∀ 𝑦  ∈  𝐼 ( ( 𝑉 ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑥 ) )  =  ( ( 𝑉 ‘ 𝑥 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑦 ) )  ↔  ∀ 𝑎  ∈  𝐼 ∀ 𝑏  ∈  𝐼 ( ( 𝑉 ‘ 𝑏 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑎 ) )  =  ( ( 𝑉 ‘ 𝑎 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑏 ) ) ) | 
						
							| 205 | 11 204 | sylib | ⊢ ( 𝜑  →  ∀ 𝑎  ∈  𝐼 ∀ 𝑏  ∈  𝐼 ( ( 𝑉 ‘ 𝑏 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑎 ) )  =  ( ( 𝑉 ‘ 𝑎 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑏 ) ) ) | 
						
							| 206 | 205 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐼 ) )  →  ∀ 𝑎  ∈  𝐼 ∀ 𝑏  ∈  𝐼 ( ( 𝑉 ‘ 𝑏 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑎 ) )  =  ( ( 𝑉 ‘ 𝑎 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑏 ) ) ) | 
						
							| 207 | 1 2 3 4 108 6 7 8 109 195 206 130 | mplcoe5lem | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐼 ) )  →  ran  ( 𝑘  ∈  ( 𝑥  ∪  { 𝑧 } )  ↦  ( ( 𝑌 ‘ 𝑘 )  ↑  ( 𝑉 ‘ 𝑘 ) ) )  ⊆  ( ( Cntz ‘ 𝐺 ) ‘ ran  ( 𝑘  ∈  ( 𝑥  ∪  { 𝑧 } )  ↦  ( ( 𝑌 ‘ 𝑘 )  ↑  ( 𝑉 ‘ 𝑘 ) ) ) ) ) | 
						
							| 208 | 102 130 | sstrid | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐼 ) )  →  𝑥  ⊆  𝐼 ) | 
						
							| 209 | 208 | sselda | ⊢ ( ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐼 ) )  ∧  𝑘  ∈  𝑥 )  →  𝑘  ∈  𝐼 ) | 
						
							| 210 | 193 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐼 )  →  𝐺  ∈  Mnd ) | 
						
							| 211 | 15 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐼 )  →  ( 𝑌 ‘ 𝑘 )  ∈  ℕ0 ) | 
						
							| 212 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐼 )  →  𝐼  ∈  𝑊 ) | 
						
							| 213 | 9 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐼 )  →  𝑅  ∈  Ring ) | 
						
							| 214 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐼 )  →  𝑘  ∈  𝐼 ) | 
						
							| 215 | 1 8 107 212 213 214 | mvrcl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐼 )  →  ( 𝑉 ‘ 𝑘 )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 216 | 187 7 210 211 215 | mulgnn0cld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐼 )  →  ( ( 𝑌 ‘ 𝑘 )  ↑  ( 𝑉 ‘ 𝑘 ) )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 217 | 216 | adantlr | ⊢ ( ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐼 ) )  ∧  𝑘  ∈  𝐼 )  →  ( ( 𝑌 ‘ 𝑘 )  ↑  ( 𝑉 ‘ 𝑘 ) )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 218 | 209 217 | syldan | ⊢ ( ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐼 ) )  ∧  𝑘  ∈  𝑥 )  →  ( ( 𝑌 ‘ 𝑘 )  ↑  ( 𝑉 ‘ 𝑘 ) )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 219 | 1 8 107 108 109 134 | mvrcl | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐼 ) )  →  ( 𝑉 ‘ 𝑧 )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 220 | 187 7 194 135 219 | mulgnn0cld | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐼 ) )  →  ( ( 𝑌 ‘ 𝑧 )  ↑  ( 𝑉 ‘ 𝑧 ) )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 221 |  | fveq2 | ⊢ ( 𝑘  =  𝑧  →  ( 𝑌 ‘ 𝑘 )  =  ( 𝑌 ‘ 𝑧 ) ) | 
						
							| 222 |  | fveq2 | ⊢ ( 𝑘  =  𝑧  →  ( 𝑉 ‘ 𝑘 )  =  ( 𝑉 ‘ 𝑧 ) ) | 
						
							| 223 | 221 222 | oveq12d | ⊢ ( 𝑘  =  𝑧  →  ( ( 𝑌 ‘ 𝑘 )  ↑  ( 𝑉 ‘ 𝑘 ) )  =  ( ( 𝑌 ‘ 𝑧 )  ↑  ( 𝑉 ‘ 𝑧 ) ) ) | 
						
							| 224 | 223 | adantl | ⊢ ( ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐼 ) )  ∧  𝑘  =  𝑧 )  →  ( ( 𝑌 ‘ 𝑘 )  ↑  ( 𝑉 ‘ 𝑘 ) )  =  ( ( 𝑌 ‘ 𝑧 )  ↑  ( 𝑉 ‘ 𝑧 ) ) ) | 
						
							| 225 | 187 188 189 190 194 118 207 218 134 152 220 224 | gsumzunsnd | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐼 ) )  →  ( 𝐺  Σg  ( 𝑘  ∈  ( 𝑥  ∪  { 𝑧 } )  ↦  ( ( 𝑌 ‘ 𝑘 )  ↑  ( 𝑉 ‘ 𝑘 ) ) ) )  =  ( ( 𝐺  Σg  ( 𝑘  ∈  𝑥  ↦  ( ( 𝑌 ‘ 𝑘 )  ↑  ( 𝑉 ‘ 𝑘 ) ) ) ) ( .r ‘ 𝑃 ) ( ( 𝑌 ‘ 𝑧 )  ↑  ( 𝑉 ‘ 𝑧 ) ) ) ) | 
						
							| 226 | 186 225 | eqeq12d | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐼 ) )  →  ( ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  ( 𝑖  ∈  𝐼  ↦  if ( 𝑖  ∈  ( 𝑥  ∪  { 𝑧 } ) ,  ( 𝑌 ‘ 𝑖 ) ,  0 ) ) ,   1  ,   0  ) )  =  ( 𝐺  Σg  ( 𝑘  ∈  ( 𝑥  ∪  { 𝑧 } )  ↦  ( ( 𝑌 ‘ 𝑘 )  ↑  ( 𝑉 ‘ 𝑘 ) ) ) )  ↔  ( ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  ( 𝑖  ∈  𝐼  ↦  if ( 𝑖  ∈  𝑥 ,  ( 𝑌 ‘ 𝑖 ) ,  0 ) ) ,   1  ,   0  ) ) ( .r ‘ 𝑃 ) ( ( 𝑌 ‘ 𝑧 )  ↑  ( 𝑉 ‘ 𝑧 ) ) )  =  ( ( 𝐺  Σg  ( 𝑘  ∈  𝑥  ↦  ( ( 𝑌 ‘ 𝑘 )  ↑  ( 𝑉 ‘ 𝑘 ) ) ) ) ( .r ‘ 𝑃 ) ( ( 𝑌 ‘ 𝑧 )  ↑  ( 𝑉 ‘ 𝑧 ) ) ) ) ) | 
						
							| 227 | 106 226 | imbitrrid | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐼 ) )  →  ( ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  ( 𝑖  ∈  𝐼  ↦  if ( 𝑖  ∈  𝑥 ,  ( 𝑌 ‘ 𝑖 ) ,  0 ) ) ,   1  ,   0  ) )  =  ( 𝐺  Σg  ( 𝑘  ∈  𝑥  ↦  ( ( 𝑌 ‘ 𝑘 )  ↑  ( 𝑉 ‘ 𝑘 ) ) ) )  →  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  ( 𝑖  ∈  𝐼  ↦  if ( 𝑖  ∈  ( 𝑥  ∪  { 𝑧 } ) ,  ( 𝑌 ‘ 𝑖 ) ,  0 ) ) ,   1  ,   0  ) )  =  ( 𝐺  Σg  ( 𝑘  ∈  ( 𝑥  ∪  { 𝑧 } )  ↦  ( ( 𝑌 ‘ 𝑘 )  ↑  ( 𝑉 ‘ 𝑘 ) ) ) ) ) ) | 
						
							| 228 | 227 | expr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 ) )  →  ( ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐼  →  ( ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  ( 𝑖  ∈  𝐼  ↦  if ( 𝑖  ∈  𝑥 ,  ( 𝑌 ‘ 𝑖 ) ,  0 ) ) ,   1  ,   0  ) )  =  ( 𝐺  Σg  ( 𝑘  ∈  𝑥  ↦  ( ( 𝑌 ‘ 𝑘 )  ↑  ( 𝑉 ‘ 𝑘 ) ) ) )  →  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  ( 𝑖  ∈  𝐼  ↦  if ( 𝑖  ∈  ( 𝑥  ∪  { 𝑧 } ) ,  ( 𝑌 ‘ 𝑖 ) ,  0 ) ) ,   1  ,   0  ) )  =  ( 𝐺  Σg  ( 𝑘  ∈  ( 𝑥  ∪  { 𝑧 } )  ↦  ( ( 𝑌 ‘ 𝑘 )  ↑  ( 𝑉 ‘ 𝑘 ) ) ) ) ) ) ) | 
						
							| 229 | 228 | a2d | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 ) )  →  ( ( ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐼  →  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  ( 𝑖  ∈  𝐼  ↦  if ( 𝑖  ∈  𝑥 ,  ( 𝑌 ‘ 𝑖 ) ,  0 ) ) ,   1  ,   0  ) )  =  ( 𝐺  Σg  ( 𝑘  ∈  𝑥  ↦  ( ( 𝑌 ‘ 𝑘 )  ↑  ( 𝑉 ‘ 𝑘 ) ) ) ) )  →  ( ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐼  →  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  ( 𝑖  ∈  𝐼  ↦  if ( 𝑖  ∈  ( 𝑥  ∪  { 𝑧 } ) ,  ( 𝑌 ‘ 𝑖 ) ,  0 ) ) ,   1  ,   0  ) )  =  ( 𝐺  Σg  ( 𝑘  ∈  ( 𝑥  ∪  { 𝑧 } )  ↦  ( ( 𝑌 ‘ 𝑘 )  ↑  ( 𝑉 ‘ 𝑘 ) ) ) ) ) ) ) | 
						
							| 230 | 105 229 | syl5 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 ) )  →  ( ( 𝑥  ⊆  𝐼  →  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  ( 𝑖  ∈  𝐼  ↦  if ( 𝑖  ∈  𝑥 ,  ( 𝑌 ‘ 𝑖 ) ,  0 ) ) ,   1  ,   0  ) )  =  ( 𝐺  Σg  ( 𝑘  ∈  𝑥  ↦  ( ( 𝑌 ‘ 𝑘 )  ↑  ( 𝑉 ‘ 𝑘 ) ) ) ) )  →  ( ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐼  →  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  ( 𝑖  ∈  𝐼  ↦  if ( 𝑖  ∈  ( 𝑥  ∪  { 𝑧 } ) ,  ( 𝑌 ‘ 𝑖 ) ,  0 ) ) ,   1  ,   0  ) )  =  ( 𝐺  Σg  ( 𝑘  ∈  ( 𝑥  ∪  { 𝑧 } )  ↦  ( ( 𝑌 ‘ 𝑘 )  ↑  ( 𝑉 ‘ 𝑘 ) ) ) ) ) ) ) | 
						
							| 231 | 230 | expcom | ⊢ ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  →  ( 𝜑  →  ( ( 𝑥  ⊆  𝐼  →  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  ( 𝑖  ∈  𝐼  ↦  if ( 𝑖  ∈  𝑥 ,  ( 𝑌 ‘ 𝑖 ) ,  0 ) ) ,   1  ,   0  ) )  =  ( 𝐺  Σg  ( 𝑘  ∈  𝑥  ↦  ( ( 𝑌 ‘ 𝑘 )  ↑  ( 𝑉 ‘ 𝑘 ) ) ) ) )  →  ( ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐼  →  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  ( 𝑖  ∈  𝐼  ↦  if ( 𝑖  ∈  ( 𝑥  ∪  { 𝑧 } ) ,  ( 𝑌 ‘ 𝑖 ) ,  0 ) ) ,   1  ,   0  ) )  =  ( 𝐺  Σg  ( 𝑘  ∈  ( 𝑥  ∪  { 𝑧 } )  ↦  ( ( 𝑌 ‘ 𝑘 )  ↑  ( 𝑉 ‘ 𝑘 ) ) ) ) ) ) ) ) | 
						
							| 232 | 231 | a2d | ⊢ ( ( 𝑥  ∈  Fin  ∧  ¬  𝑧  ∈  𝑥 )  →  ( ( 𝜑  →  ( 𝑥  ⊆  𝐼  →  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  ( 𝑖  ∈  𝐼  ↦  if ( 𝑖  ∈  𝑥 ,  ( 𝑌 ‘ 𝑖 ) ,  0 ) ) ,   1  ,   0  ) )  =  ( 𝐺  Σg  ( 𝑘  ∈  𝑥  ↦  ( ( 𝑌 ‘ 𝑘 )  ↑  ( 𝑉 ‘ 𝑘 ) ) ) ) ) )  →  ( 𝜑  →  ( ( 𝑥  ∪  { 𝑧 } )  ⊆  𝐼  →  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  ( 𝑖  ∈  𝐼  ↦  if ( 𝑖  ∈  ( 𝑥  ∪  { 𝑧 } ) ,  ( 𝑌 ‘ 𝑖 ) ,  0 ) ) ,   1  ,   0  ) )  =  ( 𝐺  Σg  ( 𝑘  ∈  ( 𝑥  ∪  { 𝑧 } )  ↦  ( ( 𝑌 ‘ 𝑘 )  ↑  ( 𝑉 ‘ 𝑘 ) ) ) ) ) ) ) ) | 
						
							| 233 | 62 74 86 98 101 232 | findcard2s | ⊢ ( ( ◡ 𝑌  “  ℕ )  ∈  Fin  →  ( 𝜑  →  ( ( ◡ 𝑌  “  ℕ )  ⊆  𝐼  →  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  ( 𝑖  ∈  𝐼  ↦  if ( 𝑖  ∈  ( ◡ 𝑌  “  ℕ ) ,  ( 𝑌 ‘ 𝑖 ) ,  0 ) ) ,   1  ,   0  ) )  =  ( 𝐺  Σg  ( 𝑘  ∈  ( ◡ 𝑌  “  ℕ )  ↦  ( ( 𝑌 ‘ 𝑘 )  ↑  ( 𝑉 ‘ 𝑘 ) ) ) ) ) ) ) | 
						
							| 234 | 40 233 | mpcom | ⊢ ( 𝜑  →  ( ( ◡ 𝑌  “  ℕ )  ⊆  𝐼  →  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  ( 𝑖  ∈  𝐼  ↦  if ( 𝑖  ∈  ( ◡ 𝑌  “  ℕ ) ,  ( 𝑌 ‘ 𝑖 ) ,  0 ) ) ,   1  ,   0  ) )  =  ( 𝐺  Σg  ( 𝑘  ∈  ( ◡ 𝑌  “  ℕ )  ↦  ( ( 𝑌 ‘ 𝑘 )  ↑  ( 𝑉 ‘ 𝑘 ) ) ) ) ) ) | 
						
							| 235 | 39 234 | mpd | ⊢ ( 𝜑  →  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  ( 𝑖  ∈  𝐼  ↦  if ( 𝑖  ∈  ( ◡ 𝑌  “  ℕ ) ,  ( 𝑌 ‘ 𝑖 ) ,  0 ) ) ,   1  ,   0  ) )  =  ( 𝐺  Σg  ( 𝑘  ∈  ( ◡ 𝑌  “  ℕ )  ↦  ( ( 𝑌 ‘ 𝑘 )  ↑  ( 𝑉 ‘ 𝑘 ) ) ) ) ) | 
						
							| 236 | 39 | resmptd | ⊢ ( 𝜑  →  ( ( 𝑘  ∈  𝐼  ↦  ( ( 𝑌 ‘ 𝑘 )  ↑  ( 𝑉 ‘ 𝑘 ) ) )  ↾  ( ◡ 𝑌  “  ℕ ) )  =  ( 𝑘  ∈  ( ◡ 𝑌  “  ℕ )  ↦  ( ( 𝑌 ‘ 𝑘 )  ↑  ( 𝑉 ‘ 𝑘 ) ) ) ) | 
						
							| 237 | 236 | oveq2d | ⊢ ( 𝜑  →  ( 𝐺  Σg  ( ( 𝑘  ∈  𝐼  ↦  ( ( 𝑌 ‘ 𝑘 )  ↑  ( 𝑉 ‘ 𝑘 ) ) )  ↾  ( ◡ 𝑌  “  ℕ ) ) )  =  ( 𝐺  Σg  ( 𝑘  ∈  ( ◡ 𝑌  “  ℕ )  ↦  ( ( 𝑌 ‘ 𝑘 )  ↑  ( 𝑉 ‘ 𝑘 ) ) ) ) ) | 
						
							| 238 | 216 | fmpttd | ⊢ ( 𝜑  →  ( 𝑘  ∈  𝐼  ↦  ( ( 𝑌 ‘ 𝑘 )  ↑  ( 𝑉 ‘ 𝑘 ) ) ) : 𝐼 ⟶ ( Base ‘ 𝑃 ) ) | 
						
							| 239 |  | ssidd | ⊢ ( 𝜑  →  𝐼  ⊆  𝐼 ) | 
						
							| 240 | 1 2 3 4 5 6 7 8 9 10 11 239 | mplcoe5lem | ⊢ ( 𝜑  →  ran  ( 𝑘  ∈  𝐼  ↦  ( ( 𝑌 ‘ 𝑘 )  ↑  ( 𝑉 ‘ 𝑘 ) ) )  ⊆  ( ( Cntz ‘ 𝐺 ) ‘ ran  ( 𝑘  ∈  𝐼  ↦  ( ( 𝑌 ‘ 𝑘 )  ↑  ( 𝑉 ‘ 𝑘 ) ) ) ) ) | 
						
							| 241 | 15 23 5 25 | suppssr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝐼  ∖  ( ◡ 𝑌  “  ℕ ) ) )  →  ( 𝑌 ‘ 𝑘 )  =  0 ) | 
						
							| 242 | 241 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝐼  ∖  ( ◡ 𝑌  “  ℕ ) ) )  →  ( ( 𝑌 ‘ 𝑘 )  ↑  ( 𝑉 ‘ 𝑘 ) )  =  ( 0  ↑  ( 𝑉 ‘ 𝑘 ) ) ) | 
						
							| 243 |  | eldifi | ⊢ ( 𝑘  ∈  ( 𝐼  ∖  ( ◡ 𝑌  “  ℕ ) )  →  𝑘  ∈  𝐼 ) | 
						
							| 244 | 243 215 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝐼  ∖  ( ◡ 𝑌  “  ℕ ) ) )  →  ( 𝑉 ‘ 𝑘 )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 245 | 187 57 7 | mulg0 | ⊢ ( ( 𝑉 ‘ 𝑘 )  ∈  ( Base ‘ 𝑃 )  →  ( 0  ↑  ( 𝑉 ‘ 𝑘 ) )  =  ( 1r ‘ 𝑃 ) ) | 
						
							| 246 | 244 245 | syl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝐼  ∖  ( ◡ 𝑌  “  ℕ ) ) )  →  ( 0  ↑  ( 𝑉 ‘ 𝑘 ) )  =  ( 1r ‘ 𝑃 ) ) | 
						
							| 247 | 242 246 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝐼  ∖  ( ◡ 𝑌  “  ℕ ) ) )  →  ( ( 𝑌 ‘ 𝑘 )  ↑  ( 𝑉 ‘ 𝑘 ) )  =  ( 1r ‘ 𝑃 ) ) | 
						
							| 248 | 247 5 | suppss2 | ⊢ ( 𝜑  →  ( ( 𝑘  ∈  𝐼  ↦  ( ( 𝑌 ‘ 𝑘 )  ↑  ( 𝑉 ‘ 𝑘 ) ) )  supp  ( 1r ‘ 𝑃 ) )  ⊆  ( ◡ 𝑌  “  ℕ ) ) | 
						
							| 249 | 5 | mptexd | ⊢ ( 𝜑  →  ( 𝑘  ∈  𝐼  ↦  ( ( 𝑌 ‘ 𝑘 )  ↑  ( 𝑉 ‘ 𝑘 ) ) )  ∈  V ) | 
						
							| 250 |  | funmpt | ⊢ Fun  ( 𝑘  ∈  𝐼  ↦  ( ( 𝑌 ‘ 𝑘 )  ↑  ( 𝑉 ‘ 𝑘 ) ) ) | 
						
							| 251 | 250 | a1i | ⊢ ( 𝜑  →  Fun  ( 𝑘  ∈  𝐼  ↦  ( ( 𝑌 ‘ 𝑘 )  ↑  ( 𝑉 ‘ 𝑘 ) ) ) ) | 
						
							| 252 |  | fvexd | ⊢ ( 𝜑  →  ( 1r ‘ 𝑃 )  ∈  V ) | 
						
							| 253 |  | suppssfifsupp | ⊢ ( ( ( ( 𝑘  ∈  𝐼  ↦  ( ( 𝑌 ‘ 𝑘 )  ↑  ( 𝑉 ‘ 𝑘 ) ) )  ∈  V  ∧  Fun  ( 𝑘  ∈  𝐼  ↦  ( ( 𝑌 ‘ 𝑘 )  ↑  ( 𝑉 ‘ 𝑘 ) ) )  ∧  ( 1r ‘ 𝑃 )  ∈  V )  ∧  ( ( ◡ 𝑌  “  ℕ )  ∈  Fin  ∧  ( ( 𝑘  ∈  𝐼  ↦  ( ( 𝑌 ‘ 𝑘 )  ↑  ( 𝑉 ‘ 𝑘 ) ) )  supp  ( 1r ‘ 𝑃 ) )  ⊆  ( ◡ 𝑌  “  ℕ ) ) )  →  ( 𝑘  ∈  𝐼  ↦  ( ( 𝑌 ‘ 𝑘 )  ↑  ( 𝑉 ‘ 𝑘 ) ) )  finSupp  ( 1r ‘ 𝑃 ) ) | 
						
							| 254 | 249 251 252 40 248 253 | syl32anc | ⊢ ( 𝜑  →  ( 𝑘  ∈  𝐼  ↦  ( ( 𝑌 ‘ 𝑘 )  ↑  ( 𝑉 ‘ 𝑘 ) ) )  finSupp  ( 1r ‘ 𝑃 ) ) | 
						
							| 255 | 187 57 189 193 5 238 240 248 254 | gsumzres | ⊢ ( 𝜑  →  ( 𝐺  Σg  ( ( 𝑘  ∈  𝐼  ↦  ( ( 𝑌 ‘ 𝑘 )  ↑  ( 𝑉 ‘ 𝑘 ) ) )  ↾  ( ◡ 𝑌  “  ℕ ) ) )  =  ( 𝐺  Σg  ( 𝑘  ∈  𝐼  ↦  ( ( 𝑌 ‘ 𝑘 )  ↑  ( 𝑉 ‘ 𝑘 ) ) ) ) ) | 
						
							| 256 | 235 237 255 | 3eqtr2d | ⊢ ( 𝜑  →  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  ( 𝑖  ∈  𝐼  ↦  if ( 𝑖  ∈  ( ◡ 𝑌  “  ℕ ) ,  ( 𝑌 ‘ 𝑖 ) ,  0 ) ) ,   1  ,   0  ) )  =  ( 𝐺  Σg  ( 𝑘  ∈  𝐼  ↦  ( ( 𝑌 ‘ 𝑘 )  ↑  ( 𝑉 ‘ 𝑘 ) ) ) ) ) | 
						
							| 257 | 37 256 | eqtrd | ⊢ ( 𝜑  →  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑌 ,   1  ,   0  ) )  =  ( 𝐺  Σg  ( 𝑘  ∈  𝐼  ↦  ( ( 𝑌 ‘ 𝑘 )  ↑  ( 𝑉 ‘ 𝑘 ) ) ) ) ) |