Metamath Proof Explorer


Theorem mplcoe5lem

Description: Lemma for mplcoe4 . (Contributed by AV, 7-Oct-2019)

Ref Expression
Hypotheses mplcoe1.p 𝑃 = ( 𝐼 mPoly 𝑅 )
mplcoe1.d 𝐷 = { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin }
mplcoe1.z 0 = ( 0g𝑅 )
mplcoe1.o 1 = ( 1r𝑅 )
mplcoe1.i ( 𝜑𝐼𝑊 )
mplcoe2.g 𝐺 = ( mulGrp ‘ 𝑃 )
mplcoe2.m = ( .g𝐺 )
mplcoe2.v 𝑉 = ( 𝐼 mVar 𝑅 )
mplcoe5.r ( 𝜑𝑅 ∈ Ring )
mplcoe5.y ( 𝜑𝑌𝐷 )
mplcoe5.c ( 𝜑 → ∀ 𝑥𝐼𝑦𝐼 ( ( 𝑉𝑦 ) ( +g𝐺 ) ( 𝑉𝑥 ) ) = ( ( 𝑉𝑥 ) ( +g𝐺 ) ( 𝑉𝑦 ) ) )
mplcoe5.s ( 𝜑𝑆𝐼 )
Assertion mplcoe5lem ( 𝜑 → ran ( 𝑘𝑆 ↦ ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ran ( 𝑘𝑆 ↦ ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ) ) )

Proof

Step Hyp Ref Expression
1 mplcoe1.p 𝑃 = ( 𝐼 mPoly 𝑅 )
2 mplcoe1.d 𝐷 = { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin }
3 mplcoe1.z 0 = ( 0g𝑅 )
4 mplcoe1.o 1 = ( 1r𝑅 )
5 mplcoe1.i ( 𝜑𝐼𝑊 )
6 mplcoe2.g 𝐺 = ( mulGrp ‘ 𝑃 )
7 mplcoe2.m = ( .g𝐺 )
8 mplcoe2.v 𝑉 = ( 𝐼 mVar 𝑅 )
9 mplcoe5.r ( 𝜑𝑅 ∈ Ring )
10 mplcoe5.y ( 𝜑𝑌𝐷 )
11 mplcoe5.c ( 𝜑 → ∀ 𝑥𝐼𝑦𝐼 ( ( 𝑉𝑦 ) ( +g𝐺 ) ( 𝑉𝑥 ) ) = ( ( 𝑉𝑥 ) ( +g𝐺 ) ( 𝑉𝑦 ) ) )
12 mplcoe5.s ( 𝜑𝑆𝐼 )
13 vex 𝑥 ∈ V
14 eqid ( 𝑘𝑆 ↦ ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ) = ( 𝑘𝑆 ↦ ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) )
15 14 elrnmpt ( 𝑥 ∈ V → ( 𝑥 ∈ ran ( 𝑘𝑆 ↦ ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ) ↔ ∃ 𝑘𝑆 𝑥 = ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ) )
16 13 15 mp1i ( 𝜑 → ( 𝑥 ∈ ran ( 𝑘𝑆 ↦ ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ) ↔ ∃ 𝑘𝑆 𝑥 = ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ) )
17 vex 𝑦 ∈ V
18 14 elrnmpt ( 𝑦 ∈ V → ( 𝑦 ∈ ran ( 𝑘𝑆 ↦ ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ) ↔ ∃ 𝑘𝑆 𝑦 = ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ) )
19 17 18 mp1i ( 𝜑 → ( 𝑦 ∈ ran ( 𝑘𝑆 ↦ ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ) ↔ ∃ 𝑘𝑆 𝑦 = ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ) )
20 fveq2 ( 𝑘 = 𝑙 → ( 𝑌𝑘 ) = ( 𝑌𝑙 ) )
21 fveq2 ( 𝑘 = 𝑙 → ( 𝑉𝑘 ) = ( 𝑉𝑙 ) )
22 20 21 oveq12d ( 𝑘 = 𝑙 → ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) = ( ( 𝑌𝑙 ) ( 𝑉𝑙 ) ) )
23 22 eqeq2d ( 𝑘 = 𝑙 → ( 𝑦 = ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ↔ 𝑦 = ( ( 𝑌𝑙 ) ( 𝑉𝑙 ) ) ) )
24 23 cbvrexvw ( ∃ 𝑘𝑆 𝑦 = ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ↔ ∃ 𝑙𝑆 𝑦 = ( ( 𝑌𝑙 ) ( 𝑉𝑙 ) ) )
25 eqid ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 )
26 eqid ( .r𝑃 ) = ( .r𝑃 )
27 6 26 mgpplusg ( .r𝑃 ) = ( +g𝐺 )
28 27 eqcomi ( +g𝐺 ) = ( .r𝑃 )
29 1 mplring ( ( 𝐼𝑊𝑅 ∈ Ring ) → 𝑃 ∈ Ring )
30 5 9 29 syl2anc ( 𝜑𝑃 ∈ Ring )
31 ringsrg ( 𝑃 ∈ Ring → 𝑃 ∈ SRing )
32 30 31 syl ( 𝜑𝑃 ∈ SRing )
33 32 adantr ( ( 𝜑𝑙𝑆 ) → 𝑃 ∈ SRing )
34 33 adantr ( ( ( 𝜑𝑙𝑆 ) ∧ 𝑘𝑆 ) → 𝑃 ∈ SRing )
35 6 ringmgp ( 𝑃 ∈ Ring → 𝐺 ∈ Mnd )
36 30 35 syl ( 𝜑𝐺 ∈ Mnd )
37 36 adantr ( ( 𝜑𝑙𝑆 ) → 𝐺 ∈ Mnd )
38 12 sseld ( 𝜑 → ( 𝑙𝑆𝑙𝐼 ) )
39 38 imdistani ( ( 𝜑𝑙𝑆 ) → ( 𝜑𝑙𝐼 ) )
40 2 psrbag ( 𝐼𝑊 → ( 𝑌𝐷 ↔ ( 𝑌 : 𝐼 ⟶ ℕ0 ∧ ( 𝑌 “ ℕ ) ∈ Fin ) ) )
41 5 40 syl ( 𝜑 → ( 𝑌𝐷 ↔ ( 𝑌 : 𝐼 ⟶ ℕ0 ∧ ( 𝑌 “ ℕ ) ∈ Fin ) ) )
42 10 41 mpbid ( 𝜑 → ( 𝑌 : 𝐼 ⟶ ℕ0 ∧ ( 𝑌 “ ℕ ) ∈ Fin ) )
43 42 simpld ( 𝜑𝑌 : 𝐼 ⟶ ℕ0 )
44 43 ffvelrnda ( ( 𝜑𝑙𝐼 ) → ( 𝑌𝑙 ) ∈ ℕ0 )
45 39 44 syl ( ( 𝜑𝑙𝑆 ) → ( 𝑌𝑙 ) ∈ ℕ0 )
46 5 adantr ( ( 𝜑𝑙𝑆 ) → 𝐼𝑊 )
47 9 adantr ( ( 𝜑𝑙𝑆 ) → 𝑅 ∈ Ring )
48 12 sselda ( ( 𝜑𝑙𝑆 ) → 𝑙𝐼 )
49 1 8 25 46 47 48 mvrcl ( ( 𝜑𝑙𝑆 ) → ( 𝑉𝑙 ) ∈ ( Base ‘ 𝑃 ) )
50 6 25 mgpbas ( Base ‘ 𝑃 ) = ( Base ‘ 𝐺 )
51 50 7 mulgnn0cl ( ( 𝐺 ∈ Mnd ∧ ( 𝑌𝑙 ) ∈ ℕ0 ∧ ( 𝑉𝑙 ) ∈ ( Base ‘ 𝑃 ) ) → ( ( 𝑌𝑙 ) ( 𝑉𝑙 ) ) ∈ ( Base ‘ 𝑃 ) )
52 37 45 49 51 syl3anc ( ( 𝜑𝑙𝑆 ) → ( ( 𝑌𝑙 ) ( 𝑉𝑙 ) ) ∈ ( Base ‘ 𝑃 ) )
53 52 adantr ( ( ( 𝜑𝑙𝑆 ) ∧ 𝑘𝑆 ) → ( ( 𝑌𝑙 ) ( 𝑉𝑙 ) ) ∈ ( Base ‘ 𝑃 ) )
54 5 adantr ( ( 𝜑𝑘𝑆 ) → 𝐼𝑊 )
55 9 adantr ( ( 𝜑𝑘𝑆 ) → 𝑅 ∈ Ring )
56 12 sselda ( ( 𝜑𝑘𝑆 ) → 𝑘𝐼 )
57 1 8 25 54 55 56 mvrcl ( ( 𝜑𝑘𝑆 ) → ( 𝑉𝑘 ) ∈ ( Base ‘ 𝑃 ) )
58 57 adantlr ( ( ( 𝜑𝑙𝑆 ) ∧ 𝑘𝑆 ) → ( 𝑉𝑘 ) ∈ ( Base ‘ 𝑃 ) )
59 43 ffvelrnda ( ( 𝜑𝑘𝐼 ) → ( 𝑌𝑘 ) ∈ ℕ0 )
60 56 59 syldan ( ( 𝜑𝑘𝑆 ) → ( 𝑌𝑘 ) ∈ ℕ0 )
61 60 adantlr ( ( ( 𝜑𝑙𝑆 ) ∧ 𝑘𝑆 ) → ( 𝑌𝑘 ) ∈ ℕ0 )
62 49 adantr ( ( ( 𝜑𝑙𝑆 ) ∧ 𝑘𝑆 ) → ( 𝑉𝑙 ) ∈ ( Base ‘ 𝑃 ) )
63 45 adantr ( ( ( 𝜑𝑙𝑆 ) ∧ 𝑘𝑆 ) → ( 𝑌𝑙 ) ∈ ℕ0 )
64 fveq2 ( 𝑥 = 𝑙 → ( 𝑉𝑥 ) = ( 𝑉𝑙 ) )
65 64 oveq2d ( 𝑥 = 𝑙 → ( ( 𝑉𝑦 ) ( +g𝐺 ) ( 𝑉𝑥 ) ) = ( ( 𝑉𝑦 ) ( +g𝐺 ) ( 𝑉𝑙 ) ) )
66 64 oveq1d ( 𝑥 = 𝑙 → ( ( 𝑉𝑥 ) ( +g𝐺 ) ( 𝑉𝑦 ) ) = ( ( 𝑉𝑙 ) ( +g𝐺 ) ( 𝑉𝑦 ) ) )
67 65 66 eqeq12d ( 𝑥 = 𝑙 → ( ( ( 𝑉𝑦 ) ( +g𝐺 ) ( 𝑉𝑥 ) ) = ( ( 𝑉𝑥 ) ( +g𝐺 ) ( 𝑉𝑦 ) ) ↔ ( ( 𝑉𝑦 ) ( +g𝐺 ) ( 𝑉𝑙 ) ) = ( ( 𝑉𝑙 ) ( +g𝐺 ) ( 𝑉𝑦 ) ) ) )
68 fveq2 ( 𝑦 = 𝑘 → ( 𝑉𝑦 ) = ( 𝑉𝑘 ) )
69 68 oveq1d ( 𝑦 = 𝑘 → ( ( 𝑉𝑦 ) ( +g𝐺 ) ( 𝑉𝑙 ) ) = ( ( 𝑉𝑘 ) ( +g𝐺 ) ( 𝑉𝑙 ) ) )
70 68 oveq2d ( 𝑦 = 𝑘 → ( ( 𝑉𝑙 ) ( +g𝐺 ) ( 𝑉𝑦 ) ) = ( ( 𝑉𝑙 ) ( +g𝐺 ) ( 𝑉𝑘 ) ) )
71 69 70 eqeq12d ( 𝑦 = 𝑘 → ( ( ( 𝑉𝑦 ) ( +g𝐺 ) ( 𝑉𝑙 ) ) = ( ( 𝑉𝑙 ) ( +g𝐺 ) ( 𝑉𝑦 ) ) ↔ ( ( 𝑉𝑘 ) ( +g𝐺 ) ( 𝑉𝑙 ) ) = ( ( 𝑉𝑙 ) ( +g𝐺 ) ( 𝑉𝑘 ) ) ) )
72 67 71 rspc2v ( ( 𝑙𝐼𝑘𝐼 ) → ( ∀ 𝑥𝐼𝑦𝐼 ( ( 𝑉𝑦 ) ( +g𝐺 ) ( 𝑉𝑥 ) ) = ( ( 𝑉𝑥 ) ( +g𝐺 ) ( 𝑉𝑦 ) ) → ( ( 𝑉𝑘 ) ( +g𝐺 ) ( 𝑉𝑙 ) ) = ( ( 𝑉𝑙 ) ( +g𝐺 ) ( 𝑉𝑘 ) ) ) )
73 48 56 anim12dan ( ( 𝜑 ∧ ( 𝑙𝑆𝑘𝑆 ) ) → ( 𝑙𝐼𝑘𝐼 ) )
74 72 73 syl11 ( ∀ 𝑥𝐼𝑦𝐼 ( ( 𝑉𝑦 ) ( +g𝐺 ) ( 𝑉𝑥 ) ) = ( ( 𝑉𝑥 ) ( +g𝐺 ) ( 𝑉𝑦 ) ) → ( ( 𝜑 ∧ ( 𝑙𝑆𝑘𝑆 ) ) → ( ( 𝑉𝑘 ) ( +g𝐺 ) ( 𝑉𝑙 ) ) = ( ( 𝑉𝑙 ) ( +g𝐺 ) ( 𝑉𝑘 ) ) ) )
75 74 expd ( ∀ 𝑥𝐼𝑦𝐼 ( ( 𝑉𝑦 ) ( +g𝐺 ) ( 𝑉𝑥 ) ) = ( ( 𝑉𝑥 ) ( +g𝐺 ) ( 𝑉𝑦 ) ) → ( 𝜑 → ( ( 𝑙𝑆𝑘𝑆 ) → ( ( 𝑉𝑘 ) ( +g𝐺 ) ( 𝑉𝑙 ) ) = ( ( 𝑉𝑙 ) ( +g𝐺 ) ( 𝑉𝑘 ) ) ) ) )
76 11 75 mpcom ( 𝜑 → ( ( 𝑙𝑆𝑘𝑆 ) → ( ( 𝑉𝑘 ) ( +g𝐺 ) ( 𝑉𝑙 ) ) = ( ( 𝑉𝑙 ) ( +g𝐺 ) ( 𝑉𝑘 ) ) ) )
77 76 impl ( ( ( 𝜑𝑙𝑆 ) ∧ 𝑘𝑆 ) → ( ( 𝑉𝑘 ) ( +g𝐺 ) ( 𝑉𝑙 ) ) = ( ( 𝑉𝑙 ) ( +g𝐺 ) ( 𝑉𝑘 ) ) )
78 25 28 6 7 34 58 62 63 77 srgpcomp ( ( ( 𝜑𝑙𝑆 ) ∧ 𝑘𝑆 ) → ( ( ( 𝑌𝑙 ) ( 𝑉𝑙 ) ) ( +g𝐺 ) ( 𝑉𝑘 ) ) = ( ( 𝑉𝑘 ) ( +g𝐺 ) ( ( 𝑌𝑙 ) ( 𝑉𝑙 ) ) ) )
79 25 28 6 7 34 53 58 61 78 srgpcomp ( ( ( 𝜑𝑙𝑆 ) ∧ 𝑘𝑆 ) → ( ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ( +g𝐺 ) ( ( 𝑌𝑙 ) ( 𝑉𝑙 ) ) ) = ( ( ( 𝑌𝑙 ) ( 𝑉𝑙 ) ) ( +g𝐺 ) ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ) )
80 oveq12 ( ( 𝑥 = ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ∧ 𝑦 = ( ( 𝑌𝑙 ) ( 𝑉𝑙 ) ) ) → ( 𝑥 ( +g𝐺 ) 𝑦 ) = ( ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ( +g𝐺 ) ( ( 𝑌𝑙 ) ( 𝑉𝑙 ) ) ) )
81 oveq12 ( ( 𝑦 = ( ( 𝑌𝑙 ) ( 𝑉𝑙 ) ) ∧ 𝑥 = ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ) → ( 𝑦 ( +g𝐺 ) 𝑥 ) = ( ( ( 𝑌𝑙 ) ( 𝑉𝑙 ) ) ( +g𝐺 ) ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ) )
82 81 ancoms ( ( 𝑥 = ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ∧ 𝑦 = ( ( 𝑌𝑙 ) ( 𝑉𝑙 ) ) ) → ( 𝑦 ( +g𝐺 ) 𝑥 ) = ( ( ( 𝑌𝑙 ) ( 𝑉𝑙 ) ) ( +g𝐺 ) ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ) )
83 80 82 eqeq12d ( ( 𝑥 = ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ∧ 𝑦 = ( ( 𝑌𝑙 ) ( 𝑉𝑙 ) ) ) → ( ( 𝑥 ( +g𝐺 ) 𝑦 ) = ( 𝑦 ( +g𝐺 ) 𝑥 ) ↔ ( ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ( +g𝐺 ) ( ( 𝑌𝑙 ) ( 𝑉𝑙 ) ) ) = ( ( ( 𝑌𝑙 ) ( 𝑉𝑙 ) ) ( +g𝐺 ) ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ) ) )
84 79 83 syl5ibrcom ( ( ( 𝜑𝑙𝑆 ) ∧ 𝑘𝑆 ) → ( ( 𝑥 = ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ∧ 𝑦 = ( ( 𝑌𝑙 ) ( 𝑉𝑙 ) ) ) → ( 𝑥 ( +g𝐺 ) 𝑦 ) = ( 𝑦 ( +g𝐺 ) 𝑥 ) ) )
85 84 expd ( ( ( 𝜑𝑙𝑆 ) ∧ 𝑘𝑆 ) → ( 𝑥 = ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) → ( 𝑦 = ( ( 𝑌𝑙 ) ( 𝑉𝑙 ) ) → ( 𝑥 ( +g𝐺 ) 𝑦 ) = ( 𝑦 ( +g𝐺 ) 𝑥 ) ) ) )
86 85 rexlimdva ( ( 𝜑𝑙𝑆 ) → ( ∃ 𝑘𝑆 𝑥 = ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) → ( 𝑦 = ( ( 𝑌𝑙 ) ( 𝑉𝑙 ) ) → ( 𝑥 ( +g𝐺 ) 𝑦 ) = ( 𝑦 ( +g𝐺 ) 𝑥 ) ) ) )
87 86 com23 ( ( 𝜑𝑙𝑆 ) → ( 𝑦 = ( ( 𝑌𝑙 ) ( 𝑉𝑙 ) ) → ( ∃ 𝑘𝑆 𝑥 = ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) → ( 𝑥 ( +g𝐺 ) 𝑦 ) = ( 𝑦 ( +g𝐺 ) 𝑥 ) ) ) )
88 87 rexlimdva ( 𝜑 → ( ∃ 𝑙𝑆 𝑦 = ( ( 𝑌𝑙 ) ( 𝑉𝑙 ) ) → ( ∃ 𝑘𝑆 𝑥 = ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) → ( 𝑥 ( +g𝐺 ) 𝑦 ) = ( 𝑦 ( +g𝐺 ) 𝑥 ) ) ) )
89 24 88 syl5bi ( 𝜑 → ( ∃ 𝑘𝑆 𝑦 = ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) → ( ∃ 𝑘𝑆 𝑥 = ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) → ( 𝑥 ( +g𝐺 ) 𝑦 ) = ( 𝑦 ( +g𝐺 ) 𝑥 ) ) ) )
90 19 89 sylbid ( 𝜑 → ( 𝑦 ∈ ran ( 𝑘𝑆 ↦ ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ) → ( ∃ 𝑘𝑆 𝑥 = ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) → ( 𝑥 ( +g𝐺 ) 𝑦 ) = ( 𝑦 ( +g𝐺 ) 𝑥 ) ) ) )
91 90 com23 ( 𝜑 → ( ∃ 𝑘𝑆 𝑥 = ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) → ( 𝑦 ∈ ran ( 𝑘𝑆 ↦ ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ) → ( 𝑥 ( +g𝐺 ) 𝑦 ) = ( 𝑦 ( +g𝐺 ) 𝑥 ) ) ) )
92 16 91 sylbid ( 𝜑 → ( 𝑥 ∈ ran ( 𝑘𝑆 ↦ ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ) → ( 𝑦 ∈ ran ( 𝑘𝑆 ↦ ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ) → ( 𝑥 ( +g𝐺 ) 𝑦 ) = ( 𝑦 ( +g𝐺 ) 𝑥 ) ) ) )
93 92 imp32 ( ( 𝜑 ∧ ( 𝑥 ∈ ran ( 𝑘𝑆 ↦ ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ) ∧ 𝑦 ∈ ran ( 𝑘𝑆 ↦ ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ) ) ) → ( 𝑥 ( +g𝐺 ) 𝑦 ) = ( 𝑦 ( +g𝐺 ) 𝑥 ) )
94 93 ralrimivva ( 𝜑 → ∀ 𝑥 ∈ ran ( 𝑘𝑆 ↦ ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ) ∀ 𝑦 ∈ ran ( 𝑘𝑆 ↦ ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ) ( 𝑥 ( +g𝐺 ) 𝑦 ) = ( 𝑦 ( +g𝐺 ) 𝑥 ) )
95 36 adantr ( ( 𝜑𝑘𝑆 ) → 𝐺 ∈ Mnd )
96 12 sseld ( 𝜑 → ( 𝑘𝑆𝑘𝐼 ) )
97 96 imdistani ( ( 𝜑𝑘𝑆 ) → ( 𝜑𝑘𝐼 ) )
98 97 59 syl ( ( 𝜑𝑘𝑆 ) → ( 𝑌𝑘 ) ∈ ℕ0 )
99 57 50 eleqtrdi ( ( 𝜑𝑘𝑆 ) → ( 𝑉𝑘 ) ∈ ( Base ‘ 𝐺 ) )
100 eqid ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 )
101 100 7 mulgnn0cl ( ( 𝐺 ∈ Mnd ∧ ( 𝑌𝑘 ) ∈ ℕ0 ∧ ( 𝑉𝑘 ) ∈ ( Base ‘ 𝐺 ) ) → ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ∈ ( Base ‘ 𝐺 ) )
102 95 98 99 101 syl3anc ( ( 𝜑𝑘𝑆 ) → ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ∈ ( Base ‘ 𝐺 ) )
103 102 fmpttd ( 𝜑 → ( 𝑘𝑆 ↦ ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ) : 𝑆 ⟶ ( Base ‘ 𝐺 ) )
104 103 frnd ( 𝜑 → ran ( 𝑘𝑆 ↦ ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ) ⊆ ( Base ‘ 𝐺 ) )
105 eqid ( +g𝐺 ) = ( +g𝐺 )
106 eqid ( Cntz ‘ 𝐺 ) = ( Cntz ‘ 𝐺 )
107 100 105 106 sscntz ( ( ran ( 𝑘𝑆 ↦ ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ) ⊆ ( Base ‘ 𝐺 ) ∧ ran ( 𝑘𝑆 ↦ ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ) ⊆ ( Base ‘ 𝐺 ) ) → ( ran ( 𝑘𝑆 ↦ ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ran ( 𝑘𝑆 ↦ ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ) ) ↔ ∀ 𝑥 ∈ ran ( 𝑘𝑆 ↦ ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ) ∀ 𝑦 ∈ ran ( 𝑘𝑆 ↦ ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ) ( 𝑥 ( +g𝐺 ) 𝑦 ) = ( 𝑦 ( +g𝐺 ) 𝑥 ) ) )
108 104 104 107 syl2anc ( 𝜑 → ( ran ( 𝑘𝑆 ↦ ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ran ( 𝑘𝑆 ↦ ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ) ) ↔ ∀ 𝑥 ∈ ran ( 𝑘𝑆 ↦ ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ) ∀ 𝑦 ∈ ran ( 𝑘𝑆 ↦ ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ) ( 𝑥 ( +g𝐺 ) 𝑦 ) = ( 𝑦 ( +g𝐺 ) 𝑥 ) ) )
109 94 108 mpbird ( 𝜑 → ran ( 𝑘𝑆 ↦ ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ran ( 𝑘𝑆 ↦ ( ( 𝑌𝑘 ) ( 𝑉𝑘 ) ) ) ) )