Metamath Proof Explorer


Theorem mplelbas

Description: Property of being a polynomial. (Contributed by Mario Carneiro, 7-Jan-2015) (Revised by Mario Carneiro, 2-Oct-2015) (Revised by AV, 25-Jun-2019)

Ref Expression
Hypotheses mplval.p 𝑃 = ( 𝐼 mPoly 𝑅 )
mplval.s 𝑆 = ( 𝐼 mPwSer 𝑅 )
mplval.b 𝐵 = ( Base ‘ 𝑆 )
mplval.z 0 = ( 0g𝑅 )
mplbas.u 𝑈 = ( Base ‘ 𝑃 )
Assertion mplelbas ( 𝑋𝑈 ↔ ( 𝑋𝐵𝑋 finSupp 0 ) )

Proof

Step Hyp Ref Expression
1 mplval.p 𝑃 = ( 𝐼 mPoly 𝑅 )
2 mplval.s 𝑆 = ( 𝐼 mPwSer 𝑅 )
3 mplval.b 𝐵 = ( Base ‘ 𝑆 )
4 mplval.z 0 = ( 0g𝑅 )
5 mplbas.u 𝑈 = ( Base ‘ 𝑃 )
6 breq1 ( 𝑓 = 𝑋 → ( 𝑓 finSupp 0𝑋 finSupp 0 ) )
7 1 2 3 4 5 mplbas 𝑈 = { 𝑓𝐵𝑓 finSupp 0 }
8 6 7 elrab2 ( 𝑋𝑈 ↔ ( 𝑋𝐵𝑋 finSupp 0 ) )