Database
BASIC LINEAR ALGEBRA
Abstract multivariate polynomials
Definition and basic properties
mplelbas
Metamath Proof Explorer
Description: Property of being a polynomial. (Contributed by Mario Carneiro , 7-Jan-2015) (Revised by Mario Carneiro , 2-Oct-2015) (Revised by AV , 25-Jun-2019)
Ref
Expression
Hypotheses
mplval.p
⊢ 𝑃 = ( 𝐼 mPoly 𝑅 )
mplval.s
⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 )
mplval.b
⊢ 𝐵 = ( Base ‘ 𝑆 )
mplval.z
⊢ 0 = ( 0g ‘ 𝑅 )
mplbas.u
⊢ 𝑈 = ( Base ‘ 𝑃 )
Assertion
mplelbas
⊢ ( 𝑋 ∈ 𝑈 ↔ ( 𝑋 ∈ 𝐵 ∧ 𝑋 finSupp 0 ) )
Proof
Step
Hyp
Ref
Expression
1
mplval.p
⊢ 𝑃 = ( 𝐼 mPoly 𝑅 )
2
mplval.s
⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 )
3
mplval.b
⊢ 𝐵 = ( Base ‘ 𝑆 )
4
mplval.z
⊢ 0 = ( 0g ‘ 𝑅 )
5
mplbas.u
⊢ 𝑈 = ( Base ‘ 𝑃 )
6
breq1
⊢ ( 𝑓 = 𝑋 → ( 𝑓 finSupp 0 ↔ 𝑋 finSupp 0 ) )
7
1 2 3 4 5
mplbas
⊢ 𝑈 = { 𝑓 ∈ 𝐵 ∣ 𝑓 finSupp 0 }
8
6 7
elrab2
⊢ ( 𝑋 ∈ 𝑈 ↔ ( 𝑋 ∈ 𝐵 ∧ 𝑋 finSupp 0 ) )