Description: A polynomial is defined as a function on the coefficients. (Contributed by Mario Carneiro, 7-Jan-2015) (Revised by Mario Carneiro, 2-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mplelf.p | ⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) | |
| mplelf.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | ||
| mplelf.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | ||
| mplelf.d | ⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | ||
| mplelf.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| Assertion | mplelf | ⊢ ( 𝜑 → 𝑋 : 𝐷 ⟶ 𝐾 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mplelf.p | ⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) | |
| 2 | mplelf.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | |
| 3 | mplelf.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | |
| 4 | mplelf.d | ⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | |
| 5 | mplelf.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 6 | eqid | ⊢ ( 𝐼 mPwSer 𝑅 ) = ( 𝐼 mPwSer 𝑅 ) | |
| 7 | eqid | ⊢ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) | |
| 8 | 1 6 3 7 | mplbasss | ⊢ 𝐵 ⊆ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) |
| 9 | 8 5 | sselid | ⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ) |
| 10 | 6 2 4 7 9 | psrelbas | ⊢ ( 𝜑 → 𝑋 : 𝐷 ⟶ 𝐾 ) |