Database
BASIC LINEAR ALGEBRA
Abstract multivariate polynomials
Definition and basic properties
mplelsfi
Metamath Proof Explorer
Description: A polynomial treated as a coefficient function has finitely many nonzero
terms. (Contributed by Stefan O'Rear , 22-Mar-2015) (Revised by AV , 25-Jun-2019)
Ref
Expression
Hypotheses
mplrcl.p
⊢ 𝑃 = ( 𝐼 mPoly 𝑅 )
mplrcl.b
⊢ 𝐵 = ( Base ‘ 𝑃 )
mplelsfi.z
⊢ 0 = ( 0g ‘ 𝑅 )
mplelsfi.f
⊢ ( 𝜑 → 𝐹 ∈ 𝐵 )
mplelsfi.r
⊢ ( 𝜑 → 𝑅 ∈ 𝑉 )
Assertion
mplelsfi
⊢ ( 𝜑 → 𝐹 finSupp 0 )
Proof
Step
Hyp
Ref
Expression
1
mplrcl.p
⊢ 𝑃 = ( 𝐼 mPoly 𝑅 )
2
mplrcl.b
⊢ 𝐵 = ( Base ‘ 𝑃 )
3
mplelsfi.z
⊢ 0 = ( 0g ‘ 𝑅 )
4
mplelsfi.f
⊢ ( 𝜑 → 𝐹 ∈ 𝐵 )
5
mplelsfi.r
⊢ ( 𝜑 → 𝑅 ∈ 𝑉 )
6
eqid
⊢ ( 𝐼 mPwSer 𝑅 ) = ( 𝐼 mPwSer 𝑅 )
7
eqid
⊢ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( Base ‘ ( 𝐼 mPwSer 𝑅 ) )
8
1 6 7 3 2
mplelbas
⊢ ( 𝐹 ∈ 𝐵 ↔ ( 𝐹 ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ∧ 𝐹 finSupp 0 ) )
9
8
simprbi
⊢ ( 𝐹 ∈ 𝐵 → 𝐹 finSupp 0 )
10
4 9
syl
⊢ ( 𝜑 → 𝐹 finSupp 0 )