Metamath Proof Explorer


Theorem mplelsfi

Description: A polynomial treated as a coefficient function has finitely many nonzero terms. (Contributed by Stefan O'Rear, 22-Mar-2015) (Revised by AV, 25-Jun-2019)

Ref Expression
Hypotheses mplrcl.p 𝑃 = ( 𝐼 mPoly 𝑅 )
mplrcl.b 𝐵 = ( Base ‘ 𝑃 )
mplelsfi.z 0 = ( 0g𝑅 )
mplelsfi.f ( 𝜑𝐹𝐵 )
mplelsfi.r ( 𝜑𝑅𝑉 )
Assertion mplelsfi ( 𝜑𝐹 finSupp 0 )

Proof

Step Hyp Ref Expression
1 mplrcl.p 𝑃 = ( 𝐼 mPoly 𝑅 )
2 mplrcl.b 𝐵 = ( Base ‘ 𝑃 )
3 mplelsfi.z 0 = ( 0g𝑅 )
4 mplelsfi.f ( 𝜑𝐹𝐵 )
5 mplelsfi.r ( 𝜑𝑅𝑉 )
6 eqid ( 𝐼 mPwSer 𝑅 ) = ( 𝐼 mPwSer 𝑅 )
7 eqid ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( Base ‘ ( 𝐼 mPwSer 𝑅 ) )
8 1 6 7 3 2 mplelbas ( 𝐹𝐵 ↔ ( 𝐹 ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ∧ 𝐹 finSupp 0 ) )
9 8 simprbi ( 𝐹𝐵𝐹 finSupp 0 )
10 4 9 syl ( 𝜑𝐹 finSupp 0 )