Step |
Hyp |
Ref |
Expression |
1 |
|
mplind.sk |
⊢ 𝐾 = ( Base ‘ 𝑅 ) |
2 |
|
mplind.sv |
⊢ 𝑉 = ( 𝐼 mVar 𝑅 ) |
3 |
|
mplind.sy |
⊢ 𝑌 = ( 𝐼 mPoly 𝑅 ) |
4 |
|
mplind.sp |
⊢ + = ( +g ‘ 𝑌 ) |
5 |
|
mplind.st |
⊢ · = ( .r ‘ 𝑌 ) |
6 |
|
mplind.sc |
⊢ 𝐶 = ( algSc ‘ 𝑌 ) |
7 |
|
mplind.sb |
⊢ 𝐵 = ( Base ‘ 𝑌 ) |
8 |
|
mplind.p |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝐻 ) |
9 |
|
mplind.t |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻 ) ) → ( 𝑥 · 𝑦 ) ∈ 𝐻 ) |
10 |
|
mplind.s |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐾 ) → ( 𝐶 ‘ 𝑥 ) ∈ 𝐻 ) |
11 |
|
mplind.v |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑉 ‘ 𝑥 ) ∈ 𝐻 ) |
12 |
|
mplind.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
13 |
|
mplind.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) |
14 |
|
mplind.r |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
15 |
|
eqid |
⊢ ( 𝐼 mPwSer 𝑅 ) = ( 𝐼 mPwSer 𝑅 ) |
16 |
15 13 14
|
psrassa |
⊢ ( 𝜑 → ( 𝐼 mPwSer 𝑅 ) ∈ AssAlg ) |
17 |
|
inss2 |
⊢ ( 𝐻 ∩ 𝐵 ) ⊆ 𝐵 |
18 |
|
crngring |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) |
19 |
14 18
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
20 |
15 3 7 13 19
|
mplsubrg |
⊢ ( 𝜑 → 𝐵 ∈ ( SubRing ‘ ( 𝐼 mPwSer 𝑅 ) ) ) |
21 |
|
eqid |
⊢ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) |
22 |
21
|
subrgss |
⊢ ( 𝐵 ∈ ( SubRing ‘ ( 𝐼 mPwSer 𝑅 ) ) → 𝐵 ⊆ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ) |
23 |
20 22
|
syl |
⊢ ( 𝜑 → 𝐵 ⊆ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ) |
24 |
17 23
|
sstrid |
⊢ ( 𝜑 → ( 𝐻 ∩ 𝐵 ) ⊆ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ) |
25 |
3 2 7 13 19
|
mvrf2 |
⊢ ( 𝜑 → 𝑉 : 𝐼 ⟶ 𝐵 ) |
26 |
25
|
ffnd |
⊢ ( 𝜑 → 𝑉 Fn 𝐼 ) |
27 |
11
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐼 ( 𝑉 ‘ 𝑥 ) ∈ 𝐻 ) |
28 |
|
fnfvrnss |
⊢ ( ( 𝑉 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑉 ‘ 𝑥 ) ∈ 𝐻 ) → ran 𝑉 ⊆ 𝐻 ) |
29 |
26 27 28
|
syl2anc |
⊢ ( 𝜑 → ran 𝑉 ⊆ 𝐻 ) |
30 |
25
|
frnd |
⊢ ( 𝜑 → ran 𝑉 ⊆ 𝐵 ) |
31 |
29 30
|
ssind |
⊢ ( 𝜑 → ran 𝑉 ⊆ ( 𝐻 ∩ 𝐵 ) ) |
32 |
|
eqid |
⊢ ( AlgSpan ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( AlgSpan ‘ ( 𝐼 mPwSer 𝑅 ) ) |
33 |
32 21
|
aspss |
⊢ ( ( ( 𝐼 mPwSer 𝑅 ) ∈ AssAlg ∧ ( 𝐻 ∩ 𝐵 ) ⊆ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ∧ ran 𝑉 ⊆ ( 𝐻 ∩ 𝐵 ) ) → ( ( AlgSpan ‘ ( 𝐼 mPwSer 𝑅 ) ) ‘ ran 𝑉 ) ⊆ ( ( AlgSpan ‘ ( 𝐼 mPwSer 𝑅 ) ) ‘ ( 𝐻 ∩ 𝐵 ) ) ) |
34 |
16 24 31 33
|
syl3anc |
⊢ ( 𝜑 → ( ( AlgSpan ‘ ( 𝐼 mPwSer 𝑅 ) ) ‘ ran 𝑉 ) ⊆ ( ( AlgSpan ‘ ( 𝐼 mPwSer 𝑅 ) ) ‘ ( 𝐻 ∩ 𝐵 ) ) ) |
35 |
3 15 2 32 13 14
|
mplbas2 |
⊢ ( 𝜑 → ( ( AlgSpan ‘ ( 𝐼 mPwSer 𝑅 ) ) ‘ ran 𝑉 ) = ( Base ‘ 𝑌 ) ) |
36 |
35 7
|
eqtr4di |
⊢ ( 𝜑 → ( ( AlgSpan ‘ ( 𝐼 mPwSer 𝑅 ) ) ‘ ran 𝑉 ) = 𝐵 ) |
37 |
17
|
a1i |
⊢ ( 𝜑 → ( 𝐻 ∩ 𝐵 ) ⊆ 𝐵 ) |
38 |
3
|
mplassa |
⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝑅 ∈ CRing ) → 𝑌 ∈ AssAlg ) |
39 |
13 14 38
|
syl2anc |
⊢ ( 𝜑 → 𝑌 ∈ AssAlg ) |
40 |
|
eqid |
⊢ ( Scalar ‘ 𝑌 ) = ( Scalar ‘ 𝑌 ) |
41 |
6 40
|
asclrhm |
⊢ ( 𝑌 ∈ AssAlg → 𝐶 ∈ ( ( Scalar ‘ 𝑌 ) RingHom 𝑌 ) ) |
42 |
39 41
|
syl |
⊢ ( 𝜑 → 𝐶 ∈ ( ( Scalar ‘ 𝑌 ) RingHom 𝑌 ) ) |
43 |
|
eqid |
⊢ ( 1r ‘ ( Scalar ‘ 𝑌 ) ) = ( 1r ‘ ( Scalar ‘ 𝑌 ) ) |
44 |
|
eqid |
⊢ ( 1r ‘ 𝑌 ) = ( 1r ‘ 𝑌 ) |
45 |
43 44
|
rhm1 |
⊢ ( 𝐶 ∈ ( ( Scalar ‘ 𝑌 ) RingHom 𝑌 ) → ( 𝐶 ‘ ( 1r ‘ ( Scalar ‘ 𝑌 ) ) ) = ( 1r ‘ 𝑌 ) ) |
46 |
42 45
|
syl |
⊢ ( 𝜑 → ( 𝐶 ‘ ( 1r ‘ ( Scalar ‘ 𝑌 ) ) ) = ( 1r ‘ 𝑌 ) ) |
47 |
|
fveq2 |
⊢ ( 𝑥 = ( 1r ‘ ( Scalar ‘ 𝑌 ) ) → ( 𝐶 ‘ 𝑥 ) = ( 𝐶 ‘ ( 1r ‘ ( Scalar ‘ 𝑌 ) ) ) ) |
48 |
47
|
eleq1d |
⊢ ( 𝑥 = ( 1r ‘ ( Scalar ‘ 𝑌 ) ) → ( ( 𝐶 ‘ 𝑥 ) ∈ 𝐻 ↔ ( 𝐶 ‘ ( 1r ‘ ( Scalar ‘ 𝑌 ) ) ) ∈ 𝐻 ) ) |
49 |
10
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐾 ( 𝐶 ‘ 𝑥 ) ∈ 𝐻 ) |
50 |
3 13 14
|
mplsca |
⊢ ( 𝜑 → 𝑅 = ( Scalar ‘ 𝑌 ) ) |
51 |
50 19
|
eqeltrrd |
⊢ ( 𝜑 → ( Scalar ‘ 𝑌 ) ∈ Ring ) |
52 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑌 ) ) = ( Base ‘ ( Scalar ‘ 𝑌 ) ) |
53 |
52 43
|
ringidcl |
⊢ ( ( Scalar ‘ 𝑌 ) ∈ Ring → ( 1r ‘ ( Scalar ‘ 𝑌 ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ) |
54 |
51 53
|
syl |
⊢ ( 𝜑 → ( 1r ‘ ( Scalar ‘ 𝑌 ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ) |
55 |
50
|
fveq2d |
⊢ ( 𝜑 → ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ 𝑌 ) ) ) |
56 |
1 55
|
eqtrid |
⊢ ( 𝜑 → 𝐾 = ( Base ‘ ( Scalar ‘ 𝑌 ) ) ) |
57 |
54 56
|
eleqtrrd |
⊢ ( 𝜑 → ( 1r ‘ ( Scalar ‘ 𝑌 ) ) ∈ 𝐾 ) |
58 |
48 49 57
|
rspcdva |
⊢ ( 𝜑 → ( 𝐶 ‘ ( 1r ‘ ( Scalar ‘ 𝑌 ) ) ) ∈ 𝐻 ) |
59 |
46 58
|
eqeltrrd |
⊢ ( 𝜑 → ( 1r ‘ 𝑌 ) ∈ 𝐻 ) |
60 |
|
assaring |
⊢ ( 𝑌 ∈ AssAlg → 𝑌 ∈ Ring ) |
61 |
39 60
|
syl |
⊢ ( 𝜑 → 𝑌 ∈ Ring ) |
62 |
7 44
|
ringidcl |
⊢ ( 𝑌 ∈ Ring → ( 1r ‘ 𝑌 ) ∈ 𝐵 ) |
63 |
61 62
|
syl |
⊢ ( 𝜑 → ( 1r ‘ 𝑌 ) ∈ 𝐵 ) |
64 |
59 63
|
elind |
⊢ ( 𝜑 → ( 1r ‘ 𝑌 ) ∈ ( 𝐻 ∩ 𝐵 ) ) |
65 |
64
|
ne0d |
⊢ ( 𝜑 → ( 𝐻 ∩ 𝐵 ) ≠ ∅ ) |
66 |
|
elinel1 |
⊢ ( 𝑧 ∈ ( 𝐻 ∩ 𝐵 ) → 𝑧 ∈ 𝐻 ) |
67 |
|
elinel1 |
⊢ ( 𝑤 ∈ ( 𝐻 ∩ 𝐵 ) → 𝑤 ∈ 𝐻 ) |
68 |
66 67
|
anim12i |
⊢ ( ( 𝑧 ∈ ( 𝐻 ∩ 𝐵 ) ∧ 𝑤 ∈ ( 𝐻 ∩ 𝐵 ) ) → ( 𝑧 ∈ 𝐻 ∧ 𝑤 ∈ 𝐻 ) ) |
69 |
8
|
caovclg |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐻 ∧ 𝑤 ∈ 𝐻 ) ) → ( 𝑧 + 𝑤 ) ∈ 𝐻 ) |
70 |
68 69
|
sylan2 |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 𝐻 ∩ 𝐵 ) ∧ 𝑤 ∈ ( 𝐻 ∩ 𝐵 ) ) ) → ( 𝑧 + 𝑤 ) ∈ 𝐻 ) |
71 |
|
assalmod |
⊢ ( 𝑌 ∈ AssAlg → 𝑌 ∈ LMod ) |
72 |
39 71
|
syl |
⊢ ( 𝜑 → 𝑌 ∈ LMod ) |
73 |
|
lmodgrp |
⊢ ( 𝑌 ∈ LMod → 𝑌 ∈ Grp ) |
74 |
72 73
|
syl |
⊢ ( 𝜑 → 𝑌 ∈ Grp ) |
75 |
74
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 𝐻 ∩ 𝐵 ) ∧ 𝑤 ∈ ( 𝐻 ∩ 𝐵 ) ) ) → 𝑌 ∈ Grp ) |
76 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 𝐻 ∩ 𝐵 ) ∧ 𝑤 ∈ ( 𝐻 ∩ 𝐵 ) ) ) → 𝑧 ∈ ( 𝐻 ∩ 𝐵 ) ) |
77 |
76
|
elin2d |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 𝐻 ∩ 𝐵 ) ∧ 𝑤 ∈ ( 𝐻 ∩ 𝐵 ) ) ) → 𝑧 ∈ 𝐵 ) |
78 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 𝐻 ∩ 𝐵 ) ∧ 𝑤 ∈ ( 𝐻 ∩ 𝐵 ) ) ) → 𝑤 ∈ ( 𝐻 ∩ 𝐵 ) ) |
79 |
78
|
elin2d |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 𝐻 ∩ 𝐵 ) ∧ 𝑤 ∈ ( 𝐻 ∩ 𝐵 ) ) ) → 𝑤 ∈ 𝐵 ) |
80 |
7 4
|
grpcl |
⊢ ( ( 𝑌 ∈ Grp ∧ 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) → ( 𝑧 + 𝑤 ) ∈ 𝐵 ) |
81 |
75 77 79 80
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 𝐻 ∩ 𝐵 ) ∧ 𝑤 ∈ ( 𝐻 ∩ 𝐵 ) ) ) → ( 𝑧 + 𝑤 ) ∈ 𝐵 ) |
82 |
70 81
|
elind |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 𝐻 ∩ 𝐵 ) ∧ 𝑤 ∈ ( 𝐻 ∩ 𝐵 ) ) ) → ( 𝑧 + 𝑤 ) ∈ ( 𝐻 ∩ 𝐵 ) ) |
83 |
82
|
anassrs |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐻 ∩ 𝐵 ) ) ∧ 𝑤 ∈ ( 𝐻 ∩ 𝐵 ) ) → ( 𝑧 + 𝑤 ) ∈ ( 𝐻 ∩ 𝐵 ) ) |
84 |
83
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐻 ∩ 𝐵 ) ) → ∀ 𝑤 ∈ ( 𝐻 ∩ 𝐵 ) ( 𝑧 + 𝑤 ) ∈ ( 𝐻 ∩ 𝐵 ) ) |
85 |
|
eqid |
⊢ ( invg ‘ 𝑌 ) = ( invg ‘ 𝑌 ) |
86 |
61
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐻 ∩ 𝐵 ) ) → 𝑌 ∈ Ring ) |
87 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐻 ∩ 𝐵 ) ) → 𝑧 ∈ ( 𝐻 ∩ 𝐵 ) ) |
88 |
87
|
elin2d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐻 ∩ 𝐵 ) ) → 𝑧 ∈ 𝐵 ) |
89 |
7 5 44 85 86 88
|
ringnegl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐻 ∩ 𝐵 ) ) → ( ( ( invg ‘ 𝑌 ) ‘ ( 1r ‘ 𝑌 ) ) · 𝑧 ) = ( ( invg ‘ 𝑌 ) ‘ 𝑧 ) ) |
90 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐻 ∩ 𝐵 ) ) → 𝜑 ) |
91 |
|
rhmghm |
⊢ ( 𝐶 ∈ ( ( Scalar ‘ 𝑌 ) RingHom 𝑌 ) → 𝐶 ∈ ( ( Scalar ‘ 𝑌 ) GrpHom 𝑌 ) ) |
92 |
42 91
|
syl |
⊢ ( 𝜑 → 𝐶 ∈ ( ( Scalar ‘ 𝑌 ) GrpHom 𝑌 ) ) |
93 |
|
eqid |
⊢ ( invg ‘ ( Scalar ‘ 𝑌 ) ) = ( invg ‘ ( Scalar ‘ 𝑌 ) ) |
94 |
52 93 85
|
ghminv |
⊢ ( ( 𝐶 ∈ ( ( Scalar ‘ 𝑌 ) GrpHom 𝑌 ) ∧ ( 1r ‘ ( Scalar ‘ 𝑌 ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ) → ( 𝐶 ‘ ( ( invg ‘ ( Scalar ‘ 𝑌 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝑌 ) ) ) ) = ( ( invg ‘ 𝑌 ) ‘ ( 𝐶 ‘ ( 1r ‘ ( Scalar ‘ 𝑌 ) ) ) ) ) |
95 |
92 54 94
|
syl2anc |
⊢ ( 𝜑 → ( 𝐶 ‘ ( ( invg ‘ ( Scalar ‘ 𝑌 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝑌 ) ) ) ) = ( ( invg ‘ 𝑌 ) ‘ ( 𝐶 ‘ ( 1r ‘ ( Scalar ‘ 𝑌 ) ) ) ) ) |
96 |
46
|
fveq2d |
⊢ ( 𝜑 → ( ( invg ‘ 𝑌 ) ‘ ( 𝐶 ‘ ( 1r ‘ ( Scalar ‘ 𝑌 ) ) ) ) = ( ( invg ‘ 𝑌 ) ‘ ( 1r ‘ 𝑌 ) ) ) |
97 |
95 96
|
eqtrd |
⊢ ( 𝜑 → ( 𝐶 ‘ ( ( invg ‘ ( Scalar ‘ 𝑌 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝑌 ) ) ) ) = ( ( invg ‘ 𝑌 ) ‘ ( 1r ‘ 𝑌 ) ) ) |
98 |
|
fveq2 |
⊢ ( 𝑥 = ( ( invg ‘ ( Scalar ‘ 𝑌 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝑌 ) ) ) → ( 𝐶 ‘ 𝑥 ) = ( 𝐶 ‘ ( ( invg ‘ ( Scalar ‘ 𝑌 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝑌 ) ) ) ) ) |
99 |
98
|
eleq1d |
⊢ ( 𝑥 = ( ( invg ‘ ( Scalar ‘ 𝑌 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝑌 ) ) ) → ( ( 𝐶 ‘ 𝑥 ) ∈ 𝐻 ↔ ( 𝐶 ‘ ( ( invg ‘ ( Scalar ‘ 𝑌 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝑌 ) ) ) ) ∈ 𝐻 ) ) |
100 |
|
ringgrp |
⊢ ( ( Scalar ‘ 𝑌 ) ∈ Ring → ( Scalar ‘ 𝑌 ) ∈ Grp ) |
101 |
51 100
|
syl |
⊢ ( 𝜑 → ( Scalar ‘ 𝑌 ) ∈ Grp ) |
102 |
52 93
|
grpinvcl |
⊢ ( ( ( Scalar ‘ 𝑌 ) ∈ Grp ∧ ( 1r ‘ ( Scalar ‘ 𝑌 ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ) → ( ( invg ‘ ( Scalar ‘ 𝑌 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝑌 ) ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ) |
103 |
101 54 102
|
syl2anc |
⊢ ( 𝜑 → ( ( invg ‘ ( Scalar ‘ 𝑌 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝑌 ) ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ) |
104 |
103 56
|
eleqtrrd |
⊢ ( 𝜑 → ( ( invg ‘ ( Scalar ‘ 𝑌 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝑌 ) ) ) ∈ 𝐾 ) |
105 |
99 49 104
|
rspcdva |
⊢ ( 𝜑 → ( 𝐶 ‘ ( ( invg ‘ ( Scalar ‘ 𝑌 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝑌 ) ) ) ) ∈ 𝐻 ) |
106 |
97 105
|
eqeltrrd |
⊢ ( 𝜑 → ( ( invg ‘ 𝑌 ) ‘ ( 1r ‘ 𝑌 ) ) ∈ 𝐻 ) |
107 |
106
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐻 ∩ 𝐵 ) ) → ( ( invg ‘ 𝑌 ) ‘ ( 1r ‘ 𝑌 ) ) ∈ 𝐻 ) |
108 |
87
|
elin1d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐻 ∩ 𝐵 ) ) → 𝑧 ∈ 𝐻 ) |
109 |
9
|
caovclg |
⊢ ( ( 𝜑 ∧ ( ( ( invg ‘ 𝑌 ) ‘ ( 1r ‘ 𝑌 ) ) ∈ 𝐻 ∧ 𝑧 ∈ 𝐻 ) ) → ( ( ( invg ‘ 𝑌 ) ‘ ( 1r ‘ 𝑌 ) ) · 𝑧 ) ∈ 𝐻 ) |
110 |
90 107 108 109
|
syl12anc |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐻 ∩ 𝐵 ) ) → ( ( ( invg ‘ 𝑌 ) ‘ ( 1r ‘ 𝑌 ) ) · 𝑧 ) ∈ 𝐻 ) |
111 |
89 110
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐻 ∩ 𝐵 ) ) → ( ( invg ‘ 𝑌 ) ‘ 𝑧 ) ∈ 𝐻 ) |
112 |
74
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐻 ∩ 𝐵 ) ) → 𝑌 ∈ Grp ) |
113 |
7 85
|
grpinvcl |
⊢ ( ( 𝑌 ∈ Grp ∧ 𝑧 ∈ 𝐵 ) → ( ( invg ‘ 𝑌 ) ‘ 𝑧 ) ∈ 𝐵 ) |
114 |
112 88 113
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐻 ∩ 𝐵 ) ) → ( ( invg ‘ 𝑌 ) ‘ 𝑧 ) ∈ 𝐵 ) |
115 |
111 114
|
elind |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐻 ∩ 𝐵 ) ) → ( ( invg ‘ 𝑌 ) ‘ 𝑧 ) ∈ ( 𝐻 ∩ 𝐵 ) ) |
116 |
84 115
|
jca |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐻 ∩ 𝐵 ) ) → ( ∀ 𝑤 ∈ ( 𝐻 ∩ 𝐵 ) ( 𝑧 + 𝑤 ) ∈ ( 𝐻 ∩ 𝐵 ) ∧ ( ( invg ‘ 𝑌 ) ‘ 𝑧 ) ∈ ( 𝐻 ∩ 𝐵 ) ) ) |
117 |
116
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑧 ∈ ( 𝐻 ∩ 𝐵 ) ( ∀ 𝑤 ∈ ( 𝐻 ∩ 𝐵 ) ( 𝑧 + 𝑤 ) ∈ ( 𝐻 ∩ 𝐵 ) ∧ ( ( invg ‘ 𝑌 ) ‘ 𝑧 ) ∈ ( 𝐻 ∩ 𝐵 ) ) ) |
118 |
7 4 85
|
issubg2 |
⊢ ( 𝑌 ∈ Grp → ( ( 𝐻 ∩ 𝐵 ) ∈ ( SubGrp ‘ 𝑌 ) ↔ ( ( 𝐻 ∩ 𝐵 ) ⊆ 𝐵 ∧ ( 𝐻 ∩ 𝐵 ) ≠ ∅ ∧ ∀ 𝑧 ∈ ( 𝐻 ∩ 𝐵 ) ( ∀ 𝑤 ∈ ( 𝐻 ∩ 𝐵 ) ( 𝑧 + 𝑤 ) ∈ ( 𝐻 ∩ 𝐵 ) ∧ ( ( invg ‘ 𝑌 ) ‘ 𝑧 ) ∈ ( 𝐻 ∩ 𝐵 ) ) ) ) ) |
119 |
74 118
|
syl |
⊢ ( 𝜑 → ( ( 𝐻 ∩ 𝐵 ) ∈ ( SubGrp ‘ 𝑌 ) ↔ ( ( 𝐻 ∩ 𝐵 ) ⊆ 𝐵 ∧ ( 𝐻 ∩ 𝐵 ) ≠ ∅ ∧ ∀ 𝑧 ∈ ( 𝐻 ∩ 𝐵 ) ( ∀ 𝑤 ∈ ( 𝐻 ∩ 𝐵 ) ( 𝑧 + 𝑤 ) ∈ ( 𝐻 ∩ 𝐵 ) ∧ ( ( invg ‘ 𝑌 ) ‘ 𝑧 ) ∈ ( 𝐻 ∩ 𝐵 ) ) ) ) ) |
120 |
37 65 117 119
|
mpbir3and |
⊢ ( 𝜑 → ( 𝐻 ∩ 𝐵 ) ∈ ( SubGrp ‘ 𝑌 ) ) |
121 |
|
elinel1 |
⊢ ( 𝑥 ∈ ( 𝐻 ∩ 𝐵 ) → 𝑥 ∈ 𝐻 ) |
122 |
|
elinel1 |
⊢ ( 𝑦 ∈ ( 𝐻 ∩ 𝐵 ) → 𝑦 ∈ 𝐻 ) |
123 |
121 122
|
anim12i |
⊢ ( ( 𝑥 ∈ ( 𝐻 ∩ 𝐵 ) ∧ 𝑦 ∈ ( 𝐻 ∩ 𝐵 ) ) → ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻 ) ) |
124 |
123 9
|
sylan2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐻 ∩ 𝐵 ) ∧ 𝑦 ∈ ( 𝐻 ∩ 𝐵 ) ) ) → ( 𝑥 · 𝑦 ) ∈ 𝐻 ) |
125 |
61
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐻 ∩ 𝐵 ) ∧ 𝑦 ∈ ( 𝐻 ∩ 𝐵 ) ) ) → 𝑌 ∈ Ring ) |
126 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐻 ∩ 𝐵 ) ∧ 𝑦 ∈ ( 𝐻 ∩ 𝐵 ) ) ) → 𝑥 ∈ ( 𝐻 ∩ 𝐵 ) ) |
127 |
126
|
elin2d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐻 ∩ 𝐵 ) ∧ 𝑦 ∈ ( 𝐻 ∩ 𝐵 ) ) ) → 𝑥 ∈ 𝐵 ) |
128 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐻 ∩ 𝐵 ) ∧ 𝑦 ∈ ( 𝐻 ∩ 𝐵 ) ) ) → 𝑦 ∈ ( 𝐻 ∩ 𝐵 ) ) |
129 |
128
|
elin2d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐻 ∩ 𝐵 ) ∧ 𝑦 ∈ ( 𝐻 ∩ 𝐵 ) ) ) → 𝑦 ∈ 𝐵 ) |
130 |
7 5
|
ringcl |
⊢ ( ( 𝑌 ∈ Ring ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 · 𝑦 ) ∈ 𝐵 ) |
131 |
125 127 129 130
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐻 ∩ 𝐵 ) ∧ 𝑦 ∈ ( 𝐻 ∩ 𝐵 ) ) ) → ( 𝑥 · 𝑦 ) ∈ 𝐵 ) |
132 |
124 131
|
elind |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐻 ∩ 𝐵 ) ∧ 𝑦 ∈ ( 𝐻 ∩ 𝐵 ) ) ) → ( 𝑥 · 𝑦 ) ∈ ( 𝐻 ∩ 𝐵 ) ) |
133 |
132
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 𝐻 ∩ 𝐵 ) ∀ 𝑦 ∈ ( 𝐻 ∩ 𝐵 ) ( 𝑥 · 𝑦 ) ∈ ( 𝐻 ∩ 𝐵 ) ) |
134 |
7 44 5
|
issubrg2 |
⊢ ( 𝑌 ∈ Ring → ( ( 𝐻 ∩ 𝐵 ) ∈ ( SubRing ‘ 𝑌 ) ↔ ( ( 𝐻 ∩ 𝐵 ) ∈ ( SubGrp ‘ 𝑌 ) ∧ ( 1r ‘ 𝑌 ) ∈ ( 𝐻 ∩ 𝐵 ) ∧ ∀ 𝑥 ∈ ( 𝐻 ∩ 𝐵 ) ∀ 𝑦 ∈ ( 𝐻 ∩ 𝐵 ) ( 𝑥 · 𝑦 ) ∈ ( 𝐻 ∩ 𝐵 ) ) ) ) |
135 |
61 134
|
syl |
⊢ ( 𝜑 → ( ( 𝐻 ∩ 𝐵 ) ∈ ( SubRing ‘ 𝑌 ) ↔ ( ( 𝐻 ∩ 𝐵 ) ∈ ( SubGrp ‘ 𝑌 ) ∧ ( 1r ‘ 𝑌 ) ∈ ( 𝐻 ∩ 𝐵 ) ∧ ∀ 𝑥 ∈ ( 𝐻 ∩ 𝐵 ) ∀ 𝑦 ∈ ( 𝐻 ∩ 𝐵 ) ( 𝑥 · 𝑦 ) ∈ ( 𝐻 ∩ 𝐵 ) ) ) ) |
136 |
120 64 133 135
|
mpbir3and |
⊢ ( 𝜑 → ( 𝐻 ∩ 𝐵 ) ∈ ( SubRing ‘ 𝑌 ) ) |
137 |
3 15 7
|
mplval2 |
⊢ 𝑌 = ( ( 𝐼 mPwSer 𝑅 ) ↾s 𝐵 ) |
138 |
137
|
subsubrg |
⊢ ( 𝐵 ∈ ( SubRing ‘ ( 𝐼 mPwSer 𝑅 ) ) → ( ( 𝐻 ∩ 𝐵 ) ∈ ( SubRing ‘ 𝑌 ) ↔ ( ( 𝐻 ∩ 𝐵 ) ∈ ( SubRing ‘ ( 𝐼 mPwSer 𝑅 ) ) ∧ ( 𝐻 ∩ 𝐵 ) ⊆ 𝐵 ) ) ) |
139 |
138
|
simprbda |
⊢ ( ( 𝐵 ∈ ( SubRing ‘ ( 𝐼 mPwSer 𝑅 ) ) ∧ ( 𝐻 ∩ 𝐵 ) ∈ ( SubRing ‘ 𝑌 ) ) → ( 𝐻 ∩ 𝐵 ) ∈ ( SubRing ‘ ( 𝐼 mPwSer 𝑅 ) ) ) |
140 |
20 136 139
|
syl2anc |
⊢ ( 𝜑 → ( 𝐻 ∩ 𝐵 ) ∈ ( SubRing ‘ ( 𝐼 mPwSer 𝑅 ) ) ) |
141 |
|
assalmod |
⊢ ( ( 𝐼 mPwSer 𝑅 ) ∈ AssAlg → ( 𝐼 mPwSer 𝑅 ) ∈ LMod ) |
142 |
16 141
|
syl |
⊢ ( 𝜑 → ( 𝐼 mPwSer 𝑅 ) ∈ LMod ) |
143 |
15 3 7 13 19
|
mpllss |
⊢ ( 𝜑 → 𝐵 ∈ ( LSubSp ‘ ( 𝐼 mPwSer 𝑅 ) ) ) |
144 |
39
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ∧ 𝑤 ∈ ( 𝐻 ∩ 𝐵 ) ) ) → 𝑌 ∈ AssAlg ) |
145 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ∧ 𝑤 ∈ ( 𝐻 ∩ 𝐵 ) ) ) → 𝑧 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ) |
146 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ∧ 𝑤 ∈ ( 𝐻 ∩ 𝐵 ) ) ) → 𝑤 ∈ ( 𝐻 ∩ 𝐵 ) ) |
147 |
146
|
elin2d |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ∧ 𝑤 ∈ ( 𝐻 ∩ 𝐵 ) ) ) → 𝑤 ∈ 𝐵 ) |
148 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑌 ) = ( ·𝑠 ‘ 𝑌 ) |
149 |
6 40 52 7 5 148
|
asclmul1 |
⊢ ( ( 𝑌 ∈ AssAlg ∧ 𝑧 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ∧ 𝑤 ∈ 𝐵 ) → ( ( 𝐶 ‘ 𝑧 ) · 𝑤 ) = ( 𝑧 ( ·𝑠 ‘ 𝑌 ) 𝑤 ) ) |
150 |
144 145 147 149
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ∧ 𝑤 ∈ ( 𝐻 ∩ 𝐵 ) ) ) → ( ( 𝐶 ‘ 𝑧 ) · 𝑤 ) = ( 𝑧 ( ·𝑠 ‘ 𝑌 ) 𝑤 ) ) |
151 |
|
fveq2 |
⊢ ( 𝑥 = 𝑧 → ( 𝐶 ‘ 𝑥 ) = ( 𝐶 ‘ 𝑧 ) ) |
152 |
151
|
eleq1d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝐶 ‘ 𝑥 ) ∈ 𝐻 ↔ ( 𝐶 ‘ 𝑧 ) ∈ 𝐻 ) ) |
153 |
49
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ∧ 𝑤 ∈ ( 𝐻 ∩ 𝐵 ) ) ) → ∀ 𝑥 ∈ 𝐾 ( 𝐶 ‘ 𝑥 ) ∈ 𝐻 ) |
154 |
56
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ∧ 𝑤 ∈ ( 𝐻 ∩ 𝐵 ) ) ) → 𝐾 = ( Base ‘ ( Scalar ‘ 𝑌 ) ) ) |
155 |
145 154
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ∧ 𝑤 ∈ ( 𝐻 ∩ 𝐵 ) ) ) → 𝑧 ∈ 𝐾 ) |
156 |
152 153 155
|
rspcdva |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ∧ 𝑤 ∈ ( 𝐻 ∩ 𝐵 ) ) ) → ( 𝐶 ‘ 𝑧 ) ∈ 𝐻 ) |
157 |
146
|
elin1d |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ∧ 𝑤 ∈ ( 𝐻 ∩ 𝐵 ) ) ) → 𝑤 ∈ 𝐻 ) |
158 |
156 157
|
jca |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ∧ 𝑤 ∈ ( 𝐻 ∩ 𝐵 ) ) ) → ( ( 𝐶 ‘ 𝑧 ) ∈ 𝐻 ∧ 𝑤 ∈ 𝐻 ) ) |
159 |
9
|
caovclg |
⊢ ( ( 𝜑 ∧ ( ( 𝐶 ‘ 𝑧 ) ∈ 𝐻 ∧ 𝑤 ∈ 𝐻 ) ) → ( ( 𝐶 ‘ 𝑧 ) · 𝑤 ) ∈ 𝐻 ) |
160 |
158 159
|
syldan |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ∧ 𝑤 ∈ ( 𝐻 ∩ 𝐵 ) ) ) → ( ( 𝐶 ‘ 𝑧 ) · 𝑤 ) ∈ 𝐻 ) |
161 |
150 160
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ∧ 𝑤 ∈ ( 𝐻 ∩ 𝐵 ) ) ) → ( 𝑧 ( ·𝑠 ‘ 𝑌 ) 𝑤 ) ∈ 𝐻 ) |
162 |
72
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ∧ 𝑤 ∈ ( 𝐻 ∩ 𝐵 ) ) ) → 𝑌 ∈ LMod ) |
163 |
7 40 148 52
|
lmodvscl |
⊢ ( ( 𝑌 ∈ LMod ∧ 𝑧 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ∧ 𝑤 ∈ 𝐵 ) → ( 𝑧 ( ·𝑠 ‘ 𝑌 ) 𝑤 ) ∈ 𝐵 ) |
164 |
162 145 147 163
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ∧ 𝑤 ∈ ( 𝐻 ∩ 𝐵 ) ) ) → ( 𝑧 ( ·𝑠 ‘ 𝑌 ) 𝑤 ) ∈ 𝐵 ) |
165 |
161 164
|
elind |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ∧ 𝑤 ∈ ( 𝐻 ∩ 𝐵 ) ) ) → ( 𝑧 ( ·𝑠 ‘ 𝑌 ) 𝑤 ) ∈ ( 𝐻 ∩ 𝐵 ) ) |
166 |
165
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑧 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ∀ 𝑤 ∈ ( 𝐻 ∩ 𝐵 ) ( 𝑧 ( ·𝑠 ‘ 𝑌 ) 𝑤 ) ∈ ( 𝐻 ∩ 𝐵 ) ) |
167 |
|
eqid |
⊢ ( LSubSp ‘ 𝑌 ) = ( LSubSp ‘ 𝑌 ) |
168 |
40 52 7 148 167
|
islss4 |
⊢ ( 𝑌 ∈ LMod → ( ( 𝐻 ∩ 𝐵 ) ∈ ( LSubSp ‘ 𝑌 ) ↔ ( ( 𝐻 ∩ 𝐵 ) ∈ ( SubGrp ‘ 𝑌 ) ∧ ∀ 𝑧 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ∀ 𝑤 ∈ ( 𝐻 ∩ 𝐵 ) ( 𝑧 ( ·𝑠 ‘ 𝑌 ) 𝑤 ) ∈ ( 𝐻 ∩ 𝐵 ) ) ) ) |
169 |
72 168
|
syl |
⊢ ( 𝜑 → ( ( 𝐻 ∩ 𝐵 ) ∈ ( LSubSp ‘ 𝑌 ) ↔ ( ( 𝐻 ∩ 𝐵 ) ∈ ( SubGrp ‘ 𝑌 ) ∧ ∀ 𝑧 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ∀ 𝑤 ∈ ( 𝐻 ∩ 𝐵 ) ( 𝑧 ( ·𝑠 ‘ 𝑌 ) 𝑤 ) ∈ ( 𝐻 ∩ 𝐵 ) ) ) ) |
170 |
120 166 169
|
mpbir2and |
⊢ ( 𝜑 → ( 𝐻 ∩ 𝐵 ) ∈ ( LSubSp ‘ 𝑌 ) ) |
171 |
|
eqid |
⊢ ( LSubSp ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( LSubSp ‘ ( 𝐼 mPwSer 𝑅 ) ) |
172 |
137 171 167
|
lsslss |
⊢ ( ( ( 𝐼 mPwSer 𝑅 ) ∈ LMod ∧ 𝐵 ∈ ( LSubSp ‘ ( 𝐼 mPwSer 𝑅 ) ) ) → ( ( 𝐻 ∩ 𝐵 ) ∈ ( LSubSp ‘ 𝑌 ) ↔ ( ( 𝐻 ∩ 𝐵 ) ∈ ( LSubSp ‘ ( 𝐼 mPwSer 𝑅 ) ) ∧ ( 𝐻 ∩ 𝐵 ) ⊆ 𝐵 ) ) ) |
173 |
172
|
simprbda |
⊢ ( ( ( ( 𝐼 mPwSer 𝑅 ) ∈ LMod ∧ 𝐵 ∈ ( LSubSp ‘ ( 𝐼 mPwSer 𝑅 ) ) ) ∧ ( 𝐻 ∩ 𝐵 ) ∈ ( LSubSp ‘ 𝑌 ) ) → ( 𝐻 ∩ 𝐵 ) ∈ ( LSubSp ‘ ( 𝐼 mPwSer 𝑅 ) ) ) |
174 |
142 143 170 173
|
syl21anc |
⊢ ( 𝜑 → ( 𝐻 ∩ 𝐵 ) ∈ ( LSubSp ‘ ( 𝐼 mPwSer 𝑅 ) ) ) |
175 |
32 21 171
|
aspid |
⊢ ( ( ( 𝐼 mPwSer 𝑅 ) ∈ AssAlg ∧ ( 𝐻 ∩ 𝐵 ) ∈ ( SubRing ‘ ( 𝐼 mPwSer 𝑅 ) ) ∧ ( 𝐻 ∩ 𝐵 ) ∈ ( LSubSp ‘ ( 𝐼 mPwSer 𝑅 ) ) ) → ( ( AlgSpan ‘ ( 𝐼 mPwSer 𝑅 ) ) ‘ ( 𝐻 ∩ 𝐵 ) ) = ( 𝐻 ∩ 𝐵 ) ) |
176 |
16 140 174 175
|
syl3anc |
⊢ ( 𝜑 → ( ( AlgSpan ‘ ( 𝐼 mPwSer 𝑅 ) ) ‘ ( 𝐻 ∩ 𝐵 ) ) = ( 𝐻 ∩ 𝐵 ) ) |
177 |
34 36 176
|
3sstr3d |
⊢ ( 𝜑 → 𝐵 ⊆ ( 𝐻 ∩ 𝐵 ) ) |
178 |
177 12
|
sseldd |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝐻 ∩ 𝐵 ) ) |
179 |
178
|
elin1d |
⊢ ( 𝜑 → 𝑋 ∈ 𝐻 ) |