Step |
Hyp |
Ref |
Expression |
1 |
|
mplgrp.p |
⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) |
2 |
|
eqid |
⊢ ( 𝐼 mPwSer 𝑅 ) = ( 𝐼 mPwSer 𝑅 ) |
3 |
|
simpl |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) → 𝐼 ∈ 𝑉 ) |
4 |
|
simpr |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) → 𝑅 ∈ Ring ) |
5 |
2 3 4
|
psrlmod |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) → ( 𝐼 mPwSer 𝑅 ) ∈ LMod ) |
6 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
7 |
2 1 6 3 4
|
mpllss |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) → ( Base ‘ 𝑃 ) ∈ ( LSubSp ‘ ( 𝐼 mPwSer 𝑅 ) ) ) |
8 |
1 2 6
|
mplval2 |
⊢ 𝑃 = ( ( 𝐼 mPwSer 𝑅 ) ↾s ( Base ‘ 𝑃 ) ) |
9 |
|
eqid |
⊢ ( LSubSp ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( LSubSp ‘ ( 𝐼 mPwSer 𝑅 ) ) |
10 |
8 9
|
lsslmod |
⊢ ( ( ( 𝐼 mPwSer 𝑅 ) ∈ LMod ∧ ( Base ‘ 𝑃 ) ∈ ( LSubSp ‘ ( 𝐼 mPwSer 𝑅 ) ) ) → 𝑃 ∈ LMod ) |
11 |
5 7 10
|
syl2anc |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) → 𝑃 ∈ LMod ) |