| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mplsubglem.s | ⊢ 𝑆  =  ( 𝐼  mPwSer  𝑅 ) | 
						
							| 2 |  | mplsubglem.b | ⊢ 𝐵  =  ( Base ‘ 𝑆 ) | 
						
							| 3 |  | mplsubglem.z | ⊢  0   =  ( 0g ‘ 𝑅 ) | 
						
							| 4 |  | mplsubglem.d | ⊢ 𝐷  =  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } | 
						
							| 5 |  | mplsubglem.i | ⊢ ( 𝜑  →  𝐼  ∈  𝑊 ) | 
						
							| 6 |  | mplsubglem.0 | ⊢ ( 𝜑  →  ∅  ∈  𝐴 ) | 
						
							| 7 |  | mplsubglem.a | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 ) )  →  ( 𝑥  ∪  𝑦 )  ∈  𝐴 ) | 
						
							| 8 |  | mplsubglem.y | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ⊆  𝑥 ) )  →  𝑦  ∈  𝐴 ) | 
						
							| 9 |  | mplsubglem.u | ⊢ ( 𝜑  →  𝑈  =  { 𝑔  ∈  𝐵  ∣  ( 𝑔  supp   0  )  ∈  𝐴 } ) | 
						
							| 10 |  | mpllsslem.r | ⊢ ( 𝜑  →  𝑅  ∈  Ring ) | 
						
							| 11 | 1 5 10 | psrsca | ⊢ ( 𝜑  →  𝑅  =  ( Scalar ‘ 𝑆 ) ) | 
						
							| 12 |  | eqidd | ⊢ ( 𝜑  →  ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) ) | 
						
							| 13 | 2 | a1i | ⊢ ( 𝜑  →  𝐵  =  ( Base ‘ 𝑆 ) ) | 
						
							| 14 |  | eqidd | ⊢ ( 𝜑  →  ( +g ‘ 𝑆 )  =  ( +g ‘ 𝑆 ) ) | 
						
							| 15 |  | eqidd | ⊢ ( 𝜑  →  (  ·𝑠  ‘ 𝑆 )  =  (  ·𝑠  ‘ 𝑆 ) ) | 
						
							| 16 |  | eqidd | ⊢ ( 𝜑  →  ( LSubSp ‘ 𝑆 )  =  ( LSubSp ‘ 𝑆 ) ) | 
						
							| 17 |  | ringgrp | ⊢ ( 𝑅  ∈  Ring  →  𝑅  ∈  Grp ) | 
						
							| 18 | 10 17 | syl | ⊢ ( 𝜑  →  𝑅  ∈  Grp ) | 
						
							| 19 | 1 2 3 4 5 6 7 8 9 18 | mplsubglem | ⊢ ( 𝜑  →  𝑈  ∈  ( SubGrp ‘ 𝑆 ) ) | 
						
							| 20 | 2 | subgss | ⊢ ( 𝑈  ∈  ( SubGrp ‘ 𝑆 )  →  𝑈  ⊆  𝐵 ) | 
						
							| 21 | 19 20 | syl | ⊢ ( 𝜑  →  𝑈  ⊆  𝐵 ) | 
						
							| 22 |  | eqid | ⊢ ( 0g ‘ 𝑆 )  =  ( 0g ‘ 𝑆 ) | 
						
							| 23 | 22 | subg0cl | ⊢ ( 𝑈  ∈  ( SubGrp ‘ 𝑆 )  →  ( 0g ‘ 𝑆 )  ∈  𝑈 ) | 
						
							| 24 |  | ne0i | ⊢ ( ( 0g ‘ 𝑆 )  ∈  𝑈  →  𝑈  ≠  ∅ ) | 
						
							| 25 | 19 23 24 | 3syl | ⊢ ( 𝜑  →  𝑈  ≠  ∅ ) | 
						
							| 26 | 19 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑢  ∈  ( Base ‘ 𝑅 )  ∧  𝑣  ∈  𝑈  ∧  𝑤  ∈  𝑈 ) )  →  𝑈  ∈  ( SubGrp ‘ 𝑆 ) ) | 
						
							| 27 |  | eqid | ⊢ (  ·𝑠  ‘ 𝑆 )  =  (  ·𝑠  ‘ 𝑆 ) | 
						
							| 28 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 29 | 10 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑢  ∈  ( Base ‘ 𝑅 )  ∧  𝑣  ∈  𝑈 ) )  →  𝑅  ∈  Ring ) | 
						
							| 30 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑢  ∈  ( Base ‘ 𝑅 )  ∧  𝑣  ∈  𝑈 ) )  →  𝑢  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 31 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑢  ∈  ( Base ‘ 𝑅 )  ∧  𝑣  ∈  𝑈 ) )  →  𝑣  ∈  𝑈 ) | 
						
							| 32 | 9 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑢  ∈  ( Base ‘ 𝑅 )  ∧  𝑣  ∈  𝑈 ) )  →  𝑈  =  { 𝑔  ∈  𝐵  ∣  ( 𝑔  supp   0  )  ∈  𝐴 } ) | 
						
							| 33 | 32 | eleq2d | ⊢ ( ( 𝜑  ∧  ( 𝑢  ∈  ( Base ‘ 𝑅 )  ∧  𝑣  ∈  𝑈 ) )  →  ( 𝑣  ∈  𝑈  ↔  𝑣  ∈  { 𝑔  ∈  𝐵  ∣  ( 𝑔  supp   0  )  ∈  𝐴 } ) ) | 
						
							| 34 |  | oveq1 | ⊢ ( 𝑔  =  𝑣  →  ( 𝑔  supp   0  )  =  ( 𝑣  supp   0  ) ) | 
						
							| 35 | 34 | eleq1d | ⊢ ( 𝑔  =  𝑣  →  ( ( 𝑔  supp   0  )  ∈  𝐴  ↔  ( 𝑣  supp   0  )  ∈  𝐴 ) ) | 
						
							| 36 | 35 | elrab | ⊢ ( 𝑣  ∈  { 𝑔  ∈  𝐵  ∣  ( 𝑔  supp   0  )  ∈  𝐴 }  ↔  ( 𝑣  ∈  𝐵  ∧  ( 𝑣  supp   0  )  ∈  𝐴 ) ) | 
						
							| 37 | 33 36 | bitrdi | ⊢ ( ( 𝜑  ∧  ( 𝑢  ∈  ( Base ‘ 𝑅 )  ∧  𝑣  ∈  𝑈 ) )  →  ( 𝑣  ∈  𝑈  ↔  ( 𝑣  ∈  𝐵  ∧  ( 𝑣  supp   0  )  ∈  𝐴 ) ) ) | 
						
							| 38 | 31 37 | mpbid | ⊢ ( ( 𝜑  ∧  ( 𝑢  ∈  ( Base ‘ 𝑅 )  ∧  𝑣  ∈  𝑈 ) )  →  ( 𝑣  ∈  𝐵  ∧  ( 𝑣  supp   0  )  ∈  𝐴 ) ) | 
						
							| 39 | 38 | simpld | ⊢ ( ( 𝜑  ∧  ( 𝑢  ∈  ( Base ‘ 𝑅 )  ∧  𝑣  ∈  𝑈 ) )  →  𝑣  ∈  𝐵 ) | 
						
							| 40 | 1 27 28 2 29 30 39 | psrvscacl | ⊢ ( ( 𝜑  ∧  ( 𝑢  ∈  ( Base ‘ 𝑅 )  ∧  𝑣  ∈  𝑈 ) )  →  ( 𝑢 (  ·𝑠  ‘ 𝑆 ) 𝑣 )  ∈  𝐵 ) | 
						
							| 41 |  | ovex | ⊢ ( ( 𝑢 (  ·𝑠  ‘ 𝑆 ) 𝑣 )  supp   0  )  ∈  V | 
						
							| 42 | 41 | a1i | ⊢ ( ( 𝜑  ∧  ( 𝑢  ∈  ( Base ‘ 𝑅 )  ∧  𝑣  ∈  𝑈 ) )  →  ( ( 𝑢 (  ·𝑠  ‘ 𝑆 ) 𝑣 )  supp   0  )  ∈  V ) | 
						
							| 43 |  | sseq2 | ⊢ ( 𝑥  =  ( 𝑣  supp   0  )  →  ( 𝑦  ⊆  𝑥  ↔  𝑦  ⊆  ( 𝑣  supp   0  ) ) ) | 
						
							| 44 | 43 | imbi1d | ⊢ ( 𝑥  =  ( 𝑣  supp   0  )  →  ( ( 𝑦  ⊆  𝑥  →  𝑦  ∈  𝐴 )  ↔  ( 𝑦  ⊆  ( 𝑣  supp   0  )  →  𝑦  ∈  𝐴 ) ) ) | 
						
							| 45 | 44 | albidv | ⊢ ( 𝑥  =  ( 𝑣  supp   0  )  →  ( ∀ 𝑦 ( 𝑦  ⊆  𝑥  →  𝑦  ∈  𝐴 )  ↔  ∀ 𝑦 ( 𝑦  ⊆  ( 𝑣  supp   0  )  →  𝑦  ∈  𝐴 ) ) ) | 
						
							| 46 | 8 | expr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( 𝑦  ⊆  𝑥  →  𝑦  ∈  𝐴 ) ) | 
						
							| 47 | 46 | alrimiv | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ∀ 𝑦 ( 𝑦  ⊆  𝑥  →  𝑦  ∈  𝐴 ) ) | 
						
							| 48 | 47 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝐴 ∀ 𝑦 ( 𝑦  ⊆  𝑥  →  𝑦  ∈  𝐴 ) ) | 
						
							| 49 | 48 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑢  ∈  ( Base ‘ 𝑅 )  ∧  𝑣  ∈  𝑈 ) )  →  ∀ 𝑥  ∈  𝐴 ∀ 𝑦 ( 𝑦  ⊆  𝑥  →  𝑦  ∈  𝐴 ) ) | 
						
							| 50 | 38 | simprd | ⊢ ( ( 𝜑  ∧  ( 𝑢  ∈  ( Base ‘ 𝑅 )  ∧  𝑣  ∈  𝑈 ) )  →  ( 𝑣  supp   0  )  ∈  𝐴 ) | 
						
							| 51 | 45 49 50 | rspcdva | ⊢ ( ( 𝜑  ∧  ( 𝑢  ∈  ( Base ‘ 𝑅 )  ∧  𝑣  ∈  𝑈 ) )  →  ∀ 𝑦 ( 𝑦  ⊆  ( 𝑣  supp   0  )  →  𝑦  ∈  𝐴 ) ) | 
						
							| 52 | 1 28 4 2 40 | psrelbas | ⊢ ( ( 𝜑  ∧  ( 𝑢  ∈  ( Base ‘ 𝑅 )  ∧  𝑣  ∈  𝑈 ) )  →  ( 𝑢 (  ·𝑠  ‘ 𝑆 ) 𝑣 ) : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 53 |  | eqid | ⊢ ( .r ‘ 𝑅 )  =  ( .r ‘ 𝑅 ) | 
						
							| 54 | 30 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑢  ∈  ( Base ‘ 𝑅 )  ∧  𝑣  ∈  𝑈 ) )  ∧  𝑘  ∈  ( 𝐷  ∖  ( 𝑣  supp   0  ) ) )  →  𝑢  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 55 | 39 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑢  ∈  ( Base ‘ 𝑅 )  ∧  𝑣  ∈  𝑈 ) )  ∧  𝑘  ∈  ( 𝐷  ∖  ( 𝑣  supp   0  ) ) )  →  𝑣  ∈  𝐵 ) | 
						
							| 56 |  | eldifi | ⊢ ( 𝑘  ∈  ( 𝐷  ∖  ( 𝑣  supp   0  ) )  →  𝑘  ∈  𝐷 ) | 
						
							| 57 | 56 | adantl | ⊢ ( ( ( 𝜑  ∧  ( 𝑢  ∈  ( Base ‘ 𝑅 )  ∧  𝑣  ∈  𝑈 ) )  ∧  𝑘  ∈  ( 𝐷  ∖  ( 𝑣  supp   0  ) ) )  →  𝑘  ∈  𝐷 ) | 
						
							| 58 | 1 27 28 2 53 4 54 55 57 | psrvscaval | ⊢ ( ( ( 𝜑  ∧  ( 𝑢  ∈  ( Base ‘ 𝑅 )  ∧  𝑣  ∈  𝑈 ) )  ∧  𝑘  ∈  ( 𝐷  ∖  ( 𝑣  supp   0  ) ) )  →  ( ( 𝑢 (  ·𝑠  ‘ 𝑆 ) 𝑣 ) ‘ 𝑘 )  =  ( 𝑢 ( .r ‘ 𝑅 ) ( 𝑣 ‘ 𝑘 ) ) ) | 
						
							| 59 | 1 28 4 2 39 | psrelbas | ⊢ ( ( 𝜑  ∧  ( 𝑢  ∈  ( Base ‘ 𝑅 )  ∧  𝑣  ∈  𝑈 ) )  →  𝑣 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 60 |  | ssidd | ⊢ ( ( 𝜑  ∧  ( 𝑢  ∈  ( Base ‘ 𝑅 )  ∧  𝑣  ∈  𝑈 ) )  →  ( 𝑣  supp   0  )  ⊆  ( 𝑣  supp   0  ) ) | 
						
							| 61 |  | ovex | ⊢ ( ℕ0  ↑m  𝐼 )  ∈  V | 
						
							| 62 | 4 61 | rabex2 | ⊢ 𝐷  ∈  V | 
						
							| 63 | 62 | a1i | ⊢ ( ( 𝜑  ∧  ( 𝑢  ∈  ( Base ‘ 𝑅 )  ∧  𝑣  ∈  𝑈 ) )  →  𝐷  ∈  V ) | 
						
							| 64 | 3 | fvexi | ⊢  0   ∈  V | 
						
							| 65 | 64 | a1i | ⊢ ( ( 𝜑  ∧  ( 𝑢  ∈  ( Base ‘ 𝑅 )  ∧  𝑣  ∈  𝑈 ) )  →   0   ∈  V ) | 
						
							| 66 | 59 60 63 65 | suppssr | ⊢ ( ( ( 𝜑  ∧  ( 𝑢  ∈  ( Base ‘ 𝑅 )  ∧  𝑣  ∈  𝑈 ) )  ∧  𝑘  ∈  ( 𝐷  ∖  ( 𝑣  supp   0  ) ) )  →  ( 𝑣 ‘ 𝑘 )  =   0  ) | 
						
							| 67 | 66 | oveq2d | ⊢ ( ( ( 𝜑  ∧  ( 𝑢  ∈  ( Base ‘ 𝑅 )  ∧  𝑣  ∈  𝑈 ) )  ∧  𝑘  ∈  ( 𝐷  ∖  ( 𝑣  supp   0  ) ) )  →  ( 𝑢 ( .r ‘ 𝑅 ) ( 𝑣 ‘ 𝑘 ) )  =  ( 𝑢 ( .r ‘ 𝑅 )  0  ) ) | 
						
							| 68 | 28 53 3 | ringrz | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑢  ∈  ( Base ‘ 𝑅 ) )  →  ( 𝑢 ( .r ‘ 𝑅 )  0  )  =   0  ) | 
						
							| 69 | 10 30 68 | syl2an2r | ⊢ ( ( 𝜑  ∧  ( 𝑢  ∈  ( Base ‘ 𝑅 )  ∧  𝑣  ∈  𝑈 ) )  →  ( 𝑢 ( .r ‘ 𝑅 )  0  )  =   0  ) | 
						
							| 70 | 69 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑢  ∈  ( Base ‘ 𝑅 )  ∧  𝑣  ∈  𝑈 ) )  ∧  𝑘  ∈  ( 𝐷  ∖  ( 𝑣  supp   0  ) ) )  →  ( 𝑢 ( .r ‘ 𝑅 )  0  )  =   0  ) | 
						
							| 71 | 58 67 70 | 3eqtrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑢  ∈  ( Base ‘ 𝑅 )  ∧  𝑣  ∈  𝑈 ) )  ∧  𝑘  ∈  ( 𝐷  ∖  ( 𝑣  supp   0  ) ) )  →  ( ( 𝑢 (  ·𝑠  ‘ 𝑆 ) 𝑣 ) ‘ 𝑘 )  =   0  ) | 
						
							| 72 | 52 71 | suppss | ⊢ ( ( 𝜑  ∧  ( 𝑢  ∈  ( Base ‘ 𝑅 )  ∧  𝑣  ∈  𝑈 ) )  →  ( ( 𝑢 (  ·𝑠  ‘ 𝑆 ) 𝑣 )  supp   0  )  ⊆  ( 𝑣  supp   0  ) ) | 
						
							| 73 |  | sseq1 | ⊢ ( 𝑦  =  ( ( 𝑢 (  ·𝑠  ‘ 𝑆 ) 𝑣 )  supp   0  )  →  ( 𝑦  ⊆  ( 𝑣  supp   0  )  ↔  ( ( 𝑢 (  ·𝑠  ‘ 𝑆 ) 𝑣 )  supp   0  )  ⊆  ( 𝑣  supp   0  ) ) ) | 
						
							| 74 |  | eleq1 | ⊢ ( 𝑦  =  ( ( 𝑢 (  ·𝑠  ‘ 𝑆 ) 𝑣 )  supp   0  )  →  ( 𝑦  ∈  𝐴  ↔  ( ( 𝑢 (  ·𝑠  ‘ 𝑆 ) 𝑣 )  supp   0  )  ∈  𝐴 ) ) | 
						
							| 75 | 73 74 | imbi12d | ⊢ ( 𝑦  =  ( ( 𝑢 (  ·𝑠  ‘ 𝑆 ) 𝑣 )  supp   0  )  →  ( ( 𝑦  ⊆  ( 𝑣  supp   0  )  →  𝑦  ∈  𝐴 )  ↔  ( ( ( 𝑢 (  ·𝑠  ‘ 𝑆 ) 𝑣 )  supp   0  )  ⊆  ( 𝑣  supp   0  )  →  ( ( 𝑢 (  ·𝑠  ‘ 𝑆 ) 𝑣 )  supp   0  )  ∈  𝐴 ) ) ) | 
						
							| 76 | 75 | spcgv | ⊢ ( ( ( 𝑢 (  ·𝑠  ‘ 𝑆 ) 𝑣 )  supp   0  )  ∈  V  →  ( ∀ 𝑦 ( 𝑦  ⊆  ( 𝑣  supp   0  )  →  𝑦  ∈  𝐴 )  →  ( ( ( 𝑢 (  ·𝑠  ‘ 𝑆 ) 𝑣 )  supp   0  )  ⊆  ( 𝑣  supp   0  )  →  ( ( 𝑢 (  ·𝑠  ‘ 𝑆 ) 𝑣 )  supp   0  )  ∈  𝐴 ) ) ) | 
						
							| 77 | 42 51 72 76 | syl3c | ⊢ ( ( 𝜑  ∧  ( 𝑢  ∈  ( Base ‘ 𝑅 )  ∧  𝑣  ∈  𝑈 ) )  →  ( ( 𝑢 (  ·𝑠  ‘ 𝑆 ) 𝑣 )  supp   0  )  ∈  𝐴 ) | 
						
							| 78 | 32 | eleq2d | ⊢ ( ( 𝜑  ∧  ( 𝑢  ∈  ( Base ‘ 𝑅 )  ∧  𝑣  ∈  𝑈 ) )  →  ( ( 𝑢 (  ·𝑠  ‘ 𝑆 ) 𝑣 )  ∈  𝑈  ↔  ( 𝑢 (  ·𝑠  ‘ 𝑆 ) 𝑣 )  ∈  { 𝑔  ∈  𝐵  ∣  ( 𝑔  supp   0  )  ∈  𝐴 } ) ) | 
						
							| 79 |  | oveq1 | ⊢ ( 𝑔  =  ( 𝑢 (  ·𝑠  ‘ 𝑆 ) 𝑣 )  →  ( 𝑔  supp   0  )  =  ( ( 𝑢 (  ·𝑠  ‘ 𝑆 ) 𝑣 )  supp   0  ) ) | 
						
							| 80 | 79 | eleq1d | ⊢ ( 𝑔  =  ( 𝑢 (  ·𝑠  ‘ 𝑆 ) 𝑣 )  →  ( ( 𝑔  supp   0  )  ∈  𝐴  ↔  ( ( 𝑢 (  ·𝑠  ‘ 𝑆 ) 𝑣 )  supp   0  )  ∈  𝐴 ) ) | 
						
							| 81 | 80 | elrab | ⊢ ( ( 𝑢 (  ·𝑠  ‘ 𝑆 ) 𝑣 )  ∈  { 𝑔  ∈  𝐵  ∣  ( 𝑔  supp   0  )  ∈  𝐴 }  ↔  ( ( 𝑢 (  ·𝑠  ‘ 𝑆 ) 𝑣 )  ∈  𝐵  ∧  ( ( 𝑢 (  ·𝑠  ‘ 𝑆 ) 𝑣 )  supp   0  )  ∈  𝐴 ) ) | 
						
							| 82 | 78 81 | bitrdi | ⊢ ( ( 𝜑  ∧  ( 𝑢  ∈  ( Base ‘ 𝑅 )  ∧  𝑣  ∈  𝑈 ) )  →  ( ( 𝑢 (  ·𝑠  ‘ 𝑆 ) 𝑣 )  ∈  𝑈  ↔  ( ( 𝑢 (  ·𝑠  ‘ 𝑆 ) 𝑣 )  ∈  𝐵  ∧  ( ( 𝑢 (  ·𝑠  ‘ 𝑆 ) 𝑣 )  supp   0  )  ∈  𝐴 ) ) ) | 
						
							| 83 | 40 77 82 | mpbir2and | ⊢ ( ( 𝜑  ∧  ( 𝑢  ∈  ( Base ‘ 𝑅 )  ∧  𝑣  ∈  𝑈 ) )  →  ( 𝑢 (  ·𝑠  ‘ 𝑆 ) 𝑣 )  ∈  𝑈 ) | 
						
							| 84 | 83 | 3adantr3 | ⊢ ( ( 𝜑  ∧  ( 𝑢  ∈  ( Base ‘ 𝑅 )  ∧  𝑣  ∈  𝑈  ∧  𝑤  ∈  𝑈 ) )  →  ( 𝑢 (  ·𝑠  ‘ 𝑆 ) 𝑣 )  ∈  𝑈 ) | 
						
							| 85 |  | simpr3 | ⊢ ( ( 𝜑  ∧  ( 𝑢  ∈  ( Base ‘ 𝑅 )  ∧  𝑣  ∈  𝑈  ∧  𝑤  ∈  𝑈 ) )  →  𝑤  ∈  𝑈 ) | 
						
							| 86 |  | eqid | ⊢ ( +g ‘ 𝑆 )  =  ( +g ‘ 𝑆 ) | 
						
							| 87 | 86 | subgcl | ⊢ ( ( 𝑈  ∈  ( SubGrp ‘ 𝑆 )  ∧  ( 𝑢 (  ·𝑠  ‘ 𝑆 ) 𝑣 )  ∈  𝑈  ∧  𝑤  ∈  𝑈 )  →  ( ( 𝑢 (  ·𝑠  ‘ 𝑆 ) 𝑣 ) ( +g ‘ 𝑆 ) 𝑤 )  ∈  𝑈 ) | 
						
							| 88 | 26 84 85 87 | syl3anc | ⊢ ( ( 𝜑  ∧  ( 𝑢  ∈  ( Base ‘ 𝑅 )  ∧  𝑣  ∈  𝑈  ∧  𝑤  ∈  𝑈 ) )  →  ( ( 𝑢 (  ·𝑠  ‘ 𝑆 ) 𝑣 ) ( +g ‘ 𝑆 ) 𝑤 )  ∈  𝑈 ) | 
						
							| 89 | 11 12 13 14 15 16 21 25 88 | islssd | ⊢ ( 𝜑  →  𝑈  ∈  ( LSubSp ‘ 𝑆 ) ) |