| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mplgrp.p | ⊢ 𝑃  =  ( 𝐼  mPoly  𝑅 ) | 
						
							| 2 |  | drngring | ⊢ ( 𝑅  ∈  DivRing  →  𝑅  ∈  Ring ) | 
						
							| 3 | 1 | mpllmod | ⊢ ( ( 𝐼  ∈  𝑉  ∧  𝑅  ∈  Ring )  →  𝑃  ∈  LMod ) | 
						
							| 4 | 2 3 | sylan2 | ⊢ ( ( 𝐼  ∈  𝑉  ∧  𝑅  ∈  DivRing )  →  𝑃  ∈  LMod ) | 
						
							| 5 |  | simpl | ⊢ ( ( 𝐼  ∈  𝑉  ∧  𝑅  ∈  DivRing )  →  𝐼  ∈  𝑉 ) | 
						
							| 6 |  | simpr | ⊢ ( ( 𝐼  ∈  𝑉  ∧  𝑅  ∈  DivRing )  →  𝑅  ∈  DivRing ) | 
						
							| 7 | 1 5 6 | mplsca | ⊢ ( ( 𝐼  ∈  𝑉  ∧  𝑅  ∈  DivRing )  →  𝑅  =  ( Scalar ‘ 𝑃 ) ) | 
						
							| 8 | 7 6 | eqeltrrd | ⊢ ( ( 𝐼  ∈  𝑉  ∧  𝑅  ∈  DivRing )  →  ( Scalar ‘ 𝑃 )  ∈  DivRing ) | 
						
							| 9 |  | eqid | ⊢ ( Scalar ‘ 𝑃 )  =  ( Scalar ‘ 𝑃 ) | 
						
							| 10 | 9 | islvec | ⊢ ( 𝑃  ∈  LVec  ↔  ( 𝑃  ∈  LMod  ∧  ( Scalar ‘ 𝑃 )  ∈  DivRing ) ) | 
						
							| 11 | 4 8 10 | sylanbrc | ⊢ ( ( 𝐼  ∈  𝑉  ∧  𝑅  ∈  DivRing )  →  𝑃  ∈  LVec ) |