| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mplmon.s | ⊢ 𝑃  =  ( 𝐼  mPoly  𝑅 ) | 
						
							| 2 |  | mplmon.b | ⊢ 𝐵  =  ( Base ‘ 𝑃 ) | 
						
							| 3 |  | mplmon.z | ⊢  0   =  ( 0g ‘ 𝑅 ) | 
						
							| 4 |  | mplmon.o | ⊢  1   =  ( 1r ‘ 𝑅 ) | 
						
							| 5 |  | mplmon.d | ⊢ 𝐷  =  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } | 
						
							| 6 |  | mplmon.i | ⊢ ( 𝜑  →  𝐼  ∈  𝑊 ) | 
						
							| 7 |  | mplmon.r | ⊢ ( 𝜑  →  𝑅  ∈  Ring ) | 
						
							| 8 |  | mplmon.x | ⊢ ( 𝜑  →  𝑋  ∈  𝐷 ) | 
						
							| 9 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 10 | 9 4 | ringidcl | ⊢ ( 𝑅  ∈  Ring  →   1   ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 11 | 9 3 | ring0cl | ⊢ ( 𝑅  ∈  Ring  →   0   ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 12 | 10 11 | ifcld | ⊢ ( 𝑅  ∈  Ring  →  if ( 𝑦  =  𝑋 ,   1  ,   0  )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 13 | 7 12 | syl | ⊢ ( 𝜑  →  if ( 𝑦  =  𝑋 ,   1  ,   0  )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 14 | 13 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐷 )  →  if ( 𝑦  =  𝑋 ,   1  ,   0  )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 15 | 14 | fmpttd | ⊢ ( 𝜑  →  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑋 ,   1  ,   0  ) ) : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 16 |  | fvex | ⊢ ( Base ‘ 𝑅 )  ∈  V | 
						
							| 17 |  | ovex | ⊢ ( ℕ0  ↑m  𝐼 )  ∈  V | 
						
							| 18 | 5 17 | rabex2 | ⊢ 𝐷  ∈  V | 
						
							| 19 | 16 18 | elmap | ⊢ ( ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑋 ,   1  ,   0  ) )  ∈  ( ( Base ‘ 𝑅 )  ↑m  𝐷 )  ↔  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑋 ,   1  ,   0  ) ) : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 20 | 15 19 | sylibr | ⊢ ( 𝜑  →  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑋 ,   1  ,   0  ) )  ∈  ( ( Base ‘ 𝑅 )  ↑m  𝐷 ) ) | 
						
							| 21 |  | eqid | ⊢ ( 𝐼  mPwSer  𝑅 )  =  ( 𝐼  mPwSer  𝑅 ) | 
						
							| 22 |  | eqid | ⊢ ( Base ‘ ( 𝐼  mPwSer  𝑅 ) )  =  ( Base ‘ ( 𝐼  mPwSer  𝑅 ) ) | 
						
							| 23 | 21 9 5 22 6 | psrbas | ⊢ ( 𝜑  →  ( Base ‘ ( 𝐼  mPwSer  𝑅 ) )  =  ( ( Base ‘ 𝑅 )  ↑m  𝐷 ) ) | 
						
							| 24 | 20 23 | eleqtrrd | ⊢ ( 𝜑  →  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑋 ,   1  ,   0  ) )  ∈  ( Base ‘ ( 𝐼  mPwSer  𝑅 ) ) ) | 
						
							| 25 | 18 | mptex | ⊢ ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑋 ,   1  ,   0  ) )  ∈  V | 
						
							| 26 |  | funmpt | ⊢ Fun  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑋 ,   1  ,   0  ) ) | 
						
							| 27 | 3 | fvexi | ⊢  0   ∈  V | 
						
							| 28 | 25 26 27 | 3pm3.2i | ⊢ ( ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑋 ,   1  ,   0  ) )  ∈  V  ∧  Fun  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑋 ,   1  ,   0  ) )  ∧   0   ∈  V ) | 
						
							| 29 | 28 | a1i | ⊢ ( 𝜑  →  ( ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑋 ,   1  ,   0  ) )  ∈  V  ∧  Fun  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑋 ,   1  ,   0  ) )  ∧   0   ∈  V ) ) | 
						
							| 30 |  | snfi | ⊢ { 𝑋 }  ∈  Fin | 
						
							| 31 | 30 | a1i | ⊢ ( 𝜑  →  { 𝑋 }  ∈  Fin ) | 
						
							| 32 |  | eldifsni | ⊢ ( 𝑦  ∈  ( 𝐷  ∖  { 𝑋 } )  →  𝑦  ≠  𝑋 ) | 
						
							| 33 | 32 | adantl | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( 𝐷  ∖  { 𝑋 } ) )  →  𝑦  ≠  𝑋 ) | 
						
							| 34 | 33 | neneqd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( 𝐷  ∖  { 𝑋 } ) )  →  ¬  𝑦  =  𝑋 ) | 
						
							| 35 | 34 | iffalsed | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( 𝐷  ∖  { 𝑋 } ) )  →  if ( 𝑦  =  𝑋 ,   1  ,   0  )  =   0  ) | 
						
							| 36 | 18 | a1i | ⊢ ( 𝜑  →  𝐷  ∈  V ) | 
						
							| 37 | 35 36 | suppss2 | ⊢ ( 𝜑  →  ( ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑋 ,   1  ,   0  ) )  supp   0  )  ⊆  { 𝑋 } ) | 
						
							| 38 |  | suppssfifsupp | ⊢ ( ( ( ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑋 ,   1  ,   0  ) )  ∈  V  ∧  Fun  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑋 ,   1  ,   0  ) )  ∧   0   ∈  V )  ∧  ( { 𝑋 }  ∈  Fin  ∧  ( ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑋 ,   1  ,   0  ) )  supp   0  )  ⊆  { 𝑋 } ) )  →  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑋 ,   1  ,   0  ) )  finSupp   0  ) | 
						
							| 39 | 29 31 37 38 | syl12anc | ⊢ ( 𝜑  →  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑋 ,   1  ,   0  ) )  finSupp   0  ) | 
						
							| 40 | 1 21 22 3 2 | mplelbas | ⊢ ( ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑋 ,   1  ,   0  ) )  ∈  𝐵  ↔  ( ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑋 ,   1  ,   0  ) )  ∈  ( Base ‘ ( 𝐼  mPwSer  𝑅 ) )  ∧  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑋 ,   1  ,   0  ) )  finSupp   0  ) ) | 
						
							| 41 | 24 39 40 | sylanbrc | ⊢ ( 𝜑  →  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑋 ,   1  ,   0  ) )  ∈  𝐵 ) |