Step |
Hyp |
Ref |
Expression |
1 |
|
mplmon.s |
⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) |
2 |
|
mplmon.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
3 |
|
mplmon.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
4 |
|
mplmon.o |
⊢ 1 = ( 1r ‘ 𝑅 ) |
5 |
|
mplmon.d |
⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } |
6 |
|
mplmon.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) |
7 |
|
mplmon.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
8 |
|
mplmon.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐷 ) |
9 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
10 |
9 4
|
ringidcl |
⊢ ( 𝑅 ∈ Ring → 1 ∈ ( Base ‘ 𝑅 ) ) |
11 |
9 3
|
ring0cl |
⊢ ( 𝑅 ∈ Ring → 0 ∈ ( Base ‘ 𝑅 ) ) |
12 |
10 11
|
ifcld |
⊢ ( 𝑅 ∈ Ring → if ( 𝑦 = 𝑋 , 1 , 0 ) ∈ ( Base ‘ 𝑅 ) ) |
13 |
7 12
|
syl |
⊢ ( 𝜑 → if ( 𝑦 = 𝑋 , 1 , 0 ) ∈ ( Base ‘ 𝑅 ) ) |
14 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → if ( 𝑦 = 𝑋 , 1 , 0 ) ∈ ( Base ‘ 𝑅 ) ) |
15 |
14
|
fmpttd |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
16 |
|
fvex |
⊢ ( Base ‘ 𝑅 ) ∈ V |
17 |
|
ovex |
⊢ ( ℕ0 ↑m 𝐼 ) ∈ V |
18 |
5 17
|
rabex2 |
⊢ 𝐷 ∈ V |
19 |
16 18
|
elmap |
⊢ ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐷 ) ↔ ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
20 |
15 19
|
sylibr |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐷 ) ) |
21 |
|
eqid |
⊢ ( 𝐼 mPwSer 𝑅 ) = ( 𝐼 mPwSer 𝑅 ) |
22 |
|
eqid |
⊢ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) |
23 |
21 9 5 22 6
|
psrbas |
⊢ ( 𝜑 → ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( ( Base ‘ 𝑅 ) ↑m 𝐷 ) ) |
24 |
20 23
|
eleqtrrd |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ) |
25 |
18
|
mptex |
⊢ ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∈ V |
26 |
|
funmpt |
⊢ Fun ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) |
27 |
3
|
fvexi |
⊢ 0 ∈ V |
28 |
25 26 27
|
3pm3.2i |
⊢ ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∈ V ∧ Fun ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∧ 0 ∈ V ) |
29 |
28
|
a1i |
⊢ ( 𝜑 → ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∈ V ∧ Fun ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∧ 0 ∈ V ) ) |
30 |
|
snfi |
⊢ { 𝑋 } ∈ Fin |
31 |
30
|
a1i |
⊢ ( 𝜑 → { 𝑋 } ∈ Fin ) |
32 |
|
eldifsni |
⊢ ( 𝑦 ∈ ( 𝐷 ∖ { 𝑋 } ) → 𝑦 ≠ 𝑋 ) |
33 |
32
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐷 ∖ { 𝑋 } ) ) → 𝑦 ≠ 𝑋 ) |
34 |
33
|
neneqd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐷 ∖ { 𝑋 } ) ) → ¬ 𝑦 = 𝑋 ) |
35 |
34
|
iffalsed |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐷 ∖ { 𝑋 } ) ) → if ( 𝑦 = 𝑋 , 1 , 0 ) = 0 ) |
36 |
18
|
a1i |
⊢ ( 𝜑 → 𝐷 ∈ V ) |
37 |
35 36
|
suppss2 |
⊢ ( 𝜑 → ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) supp 0 ) ⊆ { 𝑋 } ) |
38 |
|
suppssfifsupp |
⊢ ( ( ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∈ V ∧ Fun ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∧ 0 ∈ V ) ∧ ( { 𝑋 } ∈ Fin ∧ ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) supp 0 ) ⊆ { 𝑋 } ) ) → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) finSupp 0 ) |
39 |
29 31 37 38
|
syl12anc |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) finSupp 0 ) |
40 |
1 21 22 3 2
|
mplelbas |
⊢ ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∈ 𝐵 ↔ ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ∧ ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) finSupp 0 ) ) |
41 |
24 39 40
|
sylanbrc |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∈ 𝐵 ) |