Metamath Proof Explorer


Theorem mplmon2cl

Description: A scaled monomial is a polynomial. (Contributed by Stefan O'Rear, 8-Mar-2015)

Ref Expression
Hypotheses mplmon2cl.p 𝑃 = ( 𝐼 mPoly 𝑅 )
mplmon2cl.d 𝐷 = { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin }
mplmon2cl.z 0 = ( 0g𝑅 )
mplmon2cl.c 𝐶 = ( Base ‘ 𝑅 )
mplmon2cl.i ( 𝜑𝐼𝑊 )
mplmon2cl.r ( 𝜑𝑅 ∈ Ring )
mplmon2cl.b 𝐵 = ( Base ‘ 𝑃 )
mplmon2cl.x ( 𝜑𝑋𝐶 )
mplmon2cl.k ( 𝜑𝐾𝐷 )
Assertion mplmon2cl ( 𝜑 → ( 𝑦𝐷 ↦ if ( 𝑦 = 𝐾 , 𝑋 , 0 ) ) ∈ 𝐵 )

Proof

Step Hyp Ref Expression
1 mplmon2cl.p 𝑃 = ( 𝐼 mPoly 𝑅 )
2 mplmon2cl.d 𝐷 = { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin }
3 mplmon2cl.z 0 = ( 0g𝑅 )
4 mplmon2cl.c 𝐶 = ( Base ‘ 𝑅 )
5 mplmon2cl.i ( 𝜑𝐼𝑊 )
6 mplmon2cl.r ( 𝜑𝑅 ∈ Ring )
7 mplmon2cl.b 𝐵 = ( Base ‘ 𝑃 )
8 mplmon2cl.x ( 𝜑𝑋𝐶 )
9 mplmon2cl.k ( 𝜑𝐾𝐷 )
10 eqid ( ·𝑠𝑃 ) = ( ·𝑠𝑃 )
11 eqid ( 1r𝑅 ) = ( 1r𝑅 )
12 1 10 2 11 3 4 5 6 9 8 mplmon2 ( 𝜑 → ( 𝑋 ( ·𝑠𝑃 ) ( 𝑦𝐷 ↦ if ( 𝑦 = 𝐾 , ( 1r𝑅 ) , 0 ) ) ) = ( 𝑦𝐷 ↦ if ( 𝑦 = 𝐾 , 𝑋 , 0 ) ) )
13 1 mpllmod ( ( 𝐼𝑊𝑅 ∈ Ring ) → 𝑃 ∈ LMod )
14 5 6 13 syl2anc ( 𝜑𝑃 ∈ LMod )
15 1 5 6 mplsca ( 𝜑𝑅 = ( Scalar ‘ 𝑃 ) )
16 15 fveq2d ( 𝜑 → ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) )
17 4 16 eqtrid ( 𝜑𝐶 = ( Base ‘ ( Scalar ‘ 𝑃 ) ) )
18 8 17 eleqtrd ( 𝜑𝑋 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) )
19 1 7 3 11 2 5 6 9 mplmon ( 𝜑 → ( 𝑦𝐷 ↦ if ( 𝑦 = 𝐾 , ( 1r𝑅 ) , 0 ) ) ∈ 𝐵 )
20 eqid ( Scalar ‘ 𝑃 ) = ( Scalar ‘ 𝑃 )
21 eqid ( Base ‘ ( Scalar ‘ 𝑃 ) ) = ( Base ‘ ( Scalar ‘ 𝑃 ) )
22 7 20 10 21 lmodvscl ( ( 𝑃 ∈ LMod ∧ 𝑋 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ ( 𝑦𝐷 ↦ if ( 𝑦 = 𝐾 , ( 1r𝑅 ) , 0 ) ) ∈ 𝐵 ) → ( 𝑋 ( ·𝑠𝑃 ) ( 𝑦𝐷 ↦ if ( 𝑦 = 𝐾 , ( 1r𝑅 ) , 0 ) ) ) ∈ 𝐵 )
23 14 18 19 22 syl3anc ( 𝜑 → ( 𝑋 ( ·𝑠𝑃 ) ( 𝑦𝐷 ↦ if ( 𝑦 = 𝐾 , ( 1r𝑅 ) , 0 ) ) ) ∈ 𝐵 )
24 12 23 eqeltrrd ( 𝜑 → ( 𝑦𝐷 ↦ if ( 𝑦 = 𝐾 , 𝑋 , 0 ) ) ∈ 𝐵 )