Step |
Hyp |
Ref |
Expression |
1 |
|
mplmon2cl.p |
⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) |
2 |
|
mplmon2cl.d |
⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } |
3 |
|
mplmon2cl.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
4 |
|
mplmon2cl.c |
⊢ 𝐶 = ( Base ‘ 𝑅 ) |
5 |
|
mplmon2cl.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) |
6 |
|
mplmon2cl.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
7 |
|
mplmon2cl.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
8 |
|
mplmon2cl.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐶 ) |
9 |
|
mplmon2cl.k |
⊢ ( 𝜑 → 𝐾 ∈ 𝐷 ) |
10 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑃 ) = ( ·𝑠 ‘ 𝑃 ) |
11 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
12 |
1 10 2 11 3 4 5 6 9 8
|
mplmon2 |
⊢ ( 𝜑 → ( 𝑋 ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝐾 , ( 1r ‘ 𝑅 ) , 0 ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝐾 , 𝑋 , 0 ) ) ) |
13 |
1
|
mpllmod |
⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝑅 ∈ Ring ) → 𝑃 ∈ LMod ) |
14 |
5 6 13
|
syl2anc |
⊢ ( 𝜑 → 𝑃 ∈ LMod ) |
15 |
1 5 6
|
mplsca |
⊢ ( 𝜑 → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
16 |
15
|
fveq2d |
⊢ ( 𝜑 → ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
17 |
4 16
|
eqtrid |
⊢ ( 𝜑 → 𝐶 = ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
18 |
8 17
|
eleqtrd |
⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
19 |
1 7 3 11 2 5 6 9
|
mplmon |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝐾 , ( 1r ‘ 𝑅 ) , 0 ) ) ∈ 𝐵 ) |
20 |
|
eqid |
⊢ ( Scalar ‘ 𝑃 ) = ( Scalar ‘ 𝑃 ) |
21 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑃 ) ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) |
22 |
7 20 10 21
|
lmodvscl |
⊢ ( ( 𝑃 ∈ LMod ∧ 𝑋 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝐾 , ( 1r ‘ 𝑅 ) , 0 ) ) ∈ 𝐵 ) → ( 𝑋 ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝐾 , ( 1r ‘ 𝑅 ) , 0 ) ) ) ∈ 𝐵 ) |
23 |
14 18 19 22
|
syl3anc |
⊢ ( 𝜑 → ( 𝑋 ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝐾 , ( 1r ‘ 𝑅 ) , 0 ) ) ) ∈ 𝐵 ) |
24 |
12 23
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝐾 , 𝑋 , 0 ) ) ∈ 𝐵 ) |