| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mplmon2cl.p | ⊢ 𝑃  =  ( 𝐼  mPoly  𝑅 ) | 
						
							| 2 |  | mplmon2cl.d | ⊢ 𝐷  =  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } | 
						
							| 3 |  | mplmon2cl.z | ⊢  0   =  ( 0g ‘ 𝑅 ) | 
						
							| 4 |  | mplmon2cl.c | ⊢ 𝐶  =  ( Base ‘ 𝑅 ) | 
						
							| 5 |  | mplmon2cl.i | ⊢ ( 𝜑  →  𝐼  ∈  𝑊 ) | 
						
							| 6 |  | mplmon2cl.r | ⊢ ( 𝜑  →  𝑅  ∈  Ring ) | 
						
							| 7 |  | mplmon2cl.b | ⊢ 𝐵  =  ( Base ‘ 𝑃 ) | 
						
							| 8 |  | mplmon2cl.x | ⊢ ( 𝜑  →  𝑋  ∈  𝐶 ) | 
						
							| 9 |  | mplmon2cl.k | ⊢ ( 𝜑  →  𝐾  ∈  𝐷 ) | 
						
							| 10 |  | eqid | ⊢ (  ·𝑠  ‘ 𝑃 )  =  (  ·𝑠  ‘ 𝑃 ) | 
						
							| 11 |  | eqid | ⊢ ( 1r ‘ 𝑅 )  =  ( 1r ‘ 𝑅 ) | 
						
							| 12 | 1 10 2 11 3 4 5 6 9 8 | mplmon2 | ⊢ ( 𝜑  →  ( 𝑋 (  ·𝑠  ‘ 𝑃 ) ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝐾 ,  ( 1r ‘ 𝑅 ) ,   0  ) ) )  =  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝐾 ,  𝑋 ,   0  ) ) ) | 
						
							| 13 | 1 5 6 | mpllmodd | ⊢ ( 𝜑  →  𝑃  ∈  LMod ) | 
						
							| 14 | 1 5 6 | mplsca | ⊢ ( 𝜑  →  𝑅  =  ( Scalar ‘ 𝑃 ) ) | 
						
							| 15 | 14 | fveq2d | ⊢ ( 𝜑  →  ( Base ‘ 𝑅 )  =  ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) | 
						
							| 16 | 4 15 | eqtrid | ⊢ ( 𝜑  →  𝐶  =  ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) | 
						
							| 17 | 8 16 | eleqtrd | ⊢ ( 𝜑  →  𝑋  ∈  ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) | 
						
							| 18 | 1 7 3 11 2 5 6 9 | mplmon | ⊢ ( 𝜑  →  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝐾 ,  ( 1r ‘ 𝑅 ) ,   0  ) )  ∈  𝐵 ) | 
						
							| 19 |  | eqid | ⊢ ( Scalar ‘ 𝑃 )  =  ( Scalar ‘ 𝑃 ) | 
						
							| 20 |  | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑃 ) )  =  ( Base ‘ ( Scalar ‘ 𝑃 ) ) | 
						
							| 21 | 7 19 10 20 | lmodvscl | ⊢ ( ( 𝑃  ∈  LMod  ∧  𝑋  ∈  ( Base ‘ ( Scalar ‘ 𝑃 ) )  ∧  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝐾 ,  ( 1r ‘ 𝑅 ) ,   0  ) )  ∈  𝐵 )  →  ( 𝑋 (  ·𝑠  ‘ 𝑃 ) ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝐾 ,  ( 1r ‘ 𝑅 ) ,   0  ) ) )  ∈  𝐵 ) | 
						
							| 22 | 13 17 18 21 | syl3anc | ⊢ ( 𝜑  →  ( 𝑋 (  ·𝑠  ‘ 𝑃 ) ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝐾 ,  ( 1r ‘ 𝑅 ) ,   0  ) ) )  ∈  𝐵 ) | 
						
							| 23 | 12 22 | eqeltrrd | ⊢ ( 𝜑  →  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝐾 ,  𝑋 ,   0  ) )  ∈  𝐵 ) |